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Introduction

Splitting Up the PDE

∂u
∂t

= f(u) + Lu,

where
u is the vector of unknows,

L is the matrix associated with a linear operator modeling
processes with short timescales
f(u) is everything else
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Introduction

IMEX Multistep Approximation

1∑
k=−M

αkqn+k = ∆t

[
0∑

k=−M

βk f(qn+k ) +
1∑

k=−M

νkLqn+k

]
.

qn approximates u(n∆t)
(αk , βk ) define the explicit method
(αk , νk ) define the implicit scheme

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 3 / 30



Introduction

IMEX Multistep Approximation

1∑
k=−M

αkqn+k = ∆t

[
0∑

k=−M

βk f(qn+k ) +
1∑

k=−M

νkLqn+k

]
.

qn approximates u(n∆t)

(αk , βk ) define the explicit method
(αk , νk ) define the implicit scheme

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 3 / 30



Introduction

IMEX Multistep Approximation

1∑
k=−M

αkqn+k = ∆t

[
0∑

k=−M

βk f(qn+k ) +
1∑

k=−M

νkLqn+k

]
.

qn approximates u(n∆t)
(αk , βk ) define the explicit method

(αk , νk ) define the implicit scheme

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 3 / 30



Introduction

IMEX Multistep Approximation

1∑
k=−M

αkqn+k = ∆t

[
0∑

k=−M

βk f(qn+k ) +
1∑

k=−M

νkLqn+k

]
.

qn approximates u(n∆t)
(αk , βk ) define the explicit method
(αk , νk ) define the implicit scheme

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 3 / 30



Introduction

Common in Atmospheric Models – T2θ/LF

Implicit: Trapezoidal over 2∆t

qn+1 − qn−1

2∆t
= θLqn+1 + (1− θ)Lqn−1

Damping if θ > 0.5

Explicit: Asselin-filtered leapfrog

qn+1 − q̃n−1

2∆t
= f(qn)

q̃n = qn + γ
(

q̃n−1 − 2qn + qn+1
)
,

Typically 0.05 ≤ γ ≤ 0.2
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Introduction

Weaknesses

Asselin-filtered leapfrog:
first-order
computational mode is only weakly damped
limits choice of spatial differences
not suitable for diffusion

Off-centered trapezoidal method:
first-order
damping is not very scale selective
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Introduction

Alternate backward scheme – BDF2/BX22

Implicit:
3
2qn+1 − 2qn + 1

2qn−1

∆t
= Lqn+1

L-stable, 2nd order
Difficult to couple with an explicit time difference

Explicit:
3
2qn+1 − 2qn + 1

2qn−1

∆t
= 2f(qn)− f

(
qn−1

)
2nd order
Amplifies oscillatory solutions
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Introduction

Can we do better?

Try Adam’s methods
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Adams Methods

A-stable Implicit Adams methods

Trapezoidal
qn+1 − qn

∆t
=

1
2

(
Lqn+1 + Lqn

)

AM2* (Nevanlinna and Liniger, 1979)

qn+1 − qn

∆t
=

3
4

Lqn+1 +
1
4

Lqn−1

AI22 (new)
qn+1 − qn

∆t
=

5
4

Lqn+1 − Lqn +
3
4

Lqn−1
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Adams Methods

The Explicit Step

3-step Adams-Bashforth: AB3

qn+1 − qn

∆t
=

23
12

f(qn)− 4
3

f
(

qn−1
)

+
5

12
f
(

qn−2
)

Optimal 3rd-order explicit Adams method
Treats oscillatory solutions well
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Test 1: The Oscillation Equation

Oscillations Forced at Two-Frequencies

∂q
∂t

= iωLq + iωHq

ωH is the high-frequency forcing.
ωL is the low-frequency forcing.
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Test 1: The Oscillation Equation

Leapfrog-trapezoidal amplification factor

No Asselin, no off-centering
|A| ≤ 1 throughout white region

ω
H ∆

t

 θ=0.5
γ=0.0

0

2

4

0
ωL ∆t

−4 −2 2 4
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Test 1: The Oscillation Equation

Leapfrog-trapezoidal amplification factor

Stable whenever the explicit part alone would be stable
ω

H ∆
t

 θ=0.5
γ=0.0

0

2

4

0
ωL ∆t

−4 −2 2 4
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Test 1: The Oscillation Equation

Leapfrog-trapezoidal amplification factor

Stable whenever |ωL| ≤ ξ|ωH|; here ξ = 1
ω

H ∆
t

 θ=0.5
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0

2

4

0
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Test 1: The Oscillation Equation

Influence of Asselin filtering and off-centering
ω

H ∆
t

a) θ=0.5
γ=0.0

0

2

4

0.9 0.9

b) θ=0.6
γ=0.0

ωL ∆t

ω
H ∆

t 0.9

c) θ=0.5
γ=0.1

−4 −2 0 2 4
0

2

4

ωL ∆t

0.7

0.9

d) θ=0.6
γ=0.1

−4 −2 0 2 4

Off-centering the trapezoidal spoils stability in limit ωH∆t → 0.
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Test 1: The Oscillation Equation

Amplification factors for other schemes

ω
H ∆

t

a) T1/AB3
0

2

4

0.7

0.9

b) BDF2/BX22

ω
H ∆

t

0.70.9

c) AM2*/AB3
0

2

4 0.70.9

d) BDF2/BX32

ωL ∆t

ω
H ∆

t

0.
70.9
e) AI22/AB3

−4 −2 0 2 4
0

2

4

ωL ∆t

0.
7

0.9

f) BI22/BX32

−4 −2 0 2 4
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Test 1: The Oscillation Equation

AI22/AB3 stability region

ωL ∆t

ω
H ∆

t

0.
70.9

e) AI22/AB3

−4 −2 0 2 4
0
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4
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Test 1: The Oscillation Equation

AI22/AB3 stability region

Stable whenever |ωL| ≤ ξ|ωH|; here ξ = 1.23

ωL ∆t

ω
H ∆

t

0.
70.9

e) AI22/AB3

−4 −2 0 2 4
0

2

4
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Test 2: Linearized Euler Equations

Compressible Boussinesq System

(
∂

∂t
+ U

∂

∂x

)
u +

∂P
∂x︸︷︷︸

s

= 0, (1)

(
∂

∂t
+ U

∂

∂x

)
w +

∂P
∂z︸︷︷︸

s

= b︸︷︷︸
b

, (2)

(
∂

∂t
+ U

∂

∂x

)
b + N2w︸ ︷︷ ︸

b

= 0, (3)

(
∂

∂t
+ U

∂

∂x

)
P + c2

s

(
∂u
∂x

+
∂w
∂z

)
︸ ︷︷ ︸

s

= 0. (4)
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Test 2: Linearized Euler Equations

Explicit or implicit buoyany?

Buoyancy explicit: Stability condition is

(|Ukmax|+ N)∆t < C,

where C is
1 for T2θ/LF without Asselin filtering or off centering
0.72 for AI22/AB3

Buoyancy implicit: Stability condition becomes

|Ukmax|∆t < C.
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Test 2: Linearized Euler Equations

Sound waves implicit; buoyancy explicit

a) λz = 20 km

∆t
 (s

)

T2θ/LF

10

20

30

40

50

b) λz = 20 km

AI22/AB3

c) λz =  2 km

∆t
 (s

)

λx (km)
0.5 3 6 9 12 15

10

20

30

40

50

d) λz =  2 km

λx (km)
0.5 3 6 9 12 15

Dashed line: stability
boundary for fully explicit

gravity waves

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 20 / 30



Test 2: Linearized Euler Equations

Sound waves and buoyancy implicit

 T2θ/LF

∆t
 (s

)

λx (km)
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λz = 20 km
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Test 2: Linearized Euler Equations

Nonhydrostatic limit: wave speed slower than U

 T2θ/LF

∆t
 (s

)

λx (km)
0.5 3 6 9 12 15

50

100
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200  AI22/AB3

λx (km)
0.5 3 6 9 12 15

 BDF2/BX22

λx (km)
0.5 3 6 9 12 15

Dashed line: ω̃L∆t = C, where

ω̃L = |Uk |.
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Test 2: Linearized Euler Equations

Wave speed exceeds U

 T2θ/LF

∆t
 (s

)

λx (km)
0.5 3 6 9 12 15

50
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200  AI22/AB3

λx (km)
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 BDF2/BX22

λx (km)
0.5 3 6 9 12 15

Solid line: ω̃H/ω̃L = ξ, where

ω̃H =
N|k |(

k2 + l2
)1/2 ; ξ =


1 T2θ/LF
1.23 AI22/AB3
3 BDF2/BX22
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Test 3: Nonlinear Euler Equations

Numerical simulations

Fixed spatial discretization, explore convergence in time to
compressible solution computed with very small ∆t .

Nonlinear compressible Boussinesq system, cs = 350 m s−1

Mean shear flow, 5 ≤ U(z) ≤ 15
Constant mean static stability, N = .01 s−1

Periodic lateral BC, rigid top and bottom
Buoyancy waves generated by compact nondivergent forcing
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Test 3: Nonlinear Euler Equations

Time-converged solution

u contours at 3000 s; shading shows streamlines of forcing field

15

15

12

12

6

9

3

18

12 1821

12 15

12

15

15

12

6

9

3
6

12

15

15

15

12

15

18

15

9

3

−50 0 50 100
−5

0

5

x (km)

z 
(k

m
)

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 25 / 30



Test 3: Nonlinear Euler Equations

Empirical convergence rates
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Buoyancy Implicit
0.60: AI22/AB3
0.30: BDF2/BX22
0.69: T2θ/LF, θ=0.5, γ=0.1
0.62: T2θ/LF, θ=0.6, γ=0.1
Buoyancy Explicit
0.57: AI22/AB3
0.26: BDF2/BX22
0.66: T2θ/LF, θ=0.5, γ=0.1
0.66: T2θ/LF, θ=0.6, γ=0.1

max CFL: Method
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Test 3: Nonlinear Euler Equations

Explicit buoyancy can improve accuracy

forward biased T2θ/LF (θ = 0.6)

AI22/AB3

0.1 0.2 0.3 0.5 0.7 1
10−5

10−4

10−3

10−2

10−1

U CFL

R
el

at
iv

e 
er

ro
r i

n 
u

(∆t)1

(∆t)2

(∆t)3

 

 

Buoyancy Implicit
0.60: AI22/AB3
0.30: BDF2/BX22
0.69: T2θ/LF, θ=0.5, γ=0.1
0.62: T2θ/LF, θ=0.6, γ=0.1
Buoyancy Explicit
0.57: AI22/AB3
0.26: BDF2/BX22
0.66: T2θ/LF, θ=0.5, γ=0.1
0.66: T2θ/LF, θ=0.6, γ=0.1

max CFL: Method

Dale Durran (Atmospheric Sci.) MetStröm Conference 2011 University of Washington 27 / 30



Test 3: Nonlinear Euler Equations

Improvement at almost no CPU cost

14% reduction in maximum ∆t for AI22/AB3 relative to Asselin-filtered T2θ/LF
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Conclusions

Conclusions

New IMEX method AI22/AB3
Higher accuracy than T2θ/LF

Better stability
Computational modes strongly damped
Diffusion handled better

Minimal extra cost relative to Asselin-filtered leapfrog-trapezoidal
scheme

14% reduction in maximum ∆t
One extra level of storage for explicit forcing terms
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Conclusions
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