Implicit-Explicit Multistep Methods for Fast-Wave
Slow-Wave Problems

Dale Durran  Peter Blossey
University of Washington

6 June 2011

Dale Durran (Atmospheric Sci.) MetStrom Conference 2011 University of Washington 1/30



Splitting Up the PDE
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Splitting Up the PDE

ou
— =1 L
5 = f(u) + Lu,
where

@ u is the vector of unknows,

@ L is the matrix associated with a linear operator modeling
processes with short timescales

@ f(u) is everything else
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IMEX Multistep Approximation
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IMEX Multistep Approximation
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@ " approximates u(nAt)
@ (ay, Bk) define the explicit method
@ (ag, vk) define the implicit scheme
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Common in Atmospheric Models — T20/LF

Implicit: Trapezoidal over 2At

qn+1 _ qn—1

_ n+1 o n—1
SAT =0Lq""" + (1 -0)Lq

@ Damping if 6 > 0.5
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Common in Atmospheric Models — T20/LF

Implicit: Trapezoidal over 2At

qn—&-1 _ qn—1

_ n+1 o n—1
SAT =0Lq""" + (1 -6)Lq

@ Damping if 6 > 0.5
Explicit: Asselin-filtered leapfrog

qn+1 - qn—1

n
5AT f(q")

6" = "+ (6" 29" +q"")

@ Typically 0.05 <~ <0.2
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Weaknesses

Asselin-filtered leapfrog:
@ first-order
@ computational mode is only weakly damped
@ limits choice of spatial differences
@ not suitable for diffusion
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Weaknesses

Asselin-filtered leapfrog:
@ first-order
@ computational mode is only weakly damped
@ limits choice of spatial differences
@ not suitable for diffusion

Off-centered trapezoidal method:
o first-order
@ damping is not very scale selective
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Alternate backward scheme — BDF2/BX22

Implicit:
Ll U T (RS
At

@ [-stable, 2nd order
@ Difficult to couple with an explicit time difference
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Alternate backward scheme — BDF2/BX22

Implicit:
Ll U T (RS
At

@ [-stable, 2nd order
@ Difficult to couple with an explicit time difference

Explicit:
3 n+1 —2q" 1pan—1
24 Aqt 24 _ 26(q") — f <qnf1>

@ 2nd order
@ Amplifies oscillatory solutions
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Can we do better?

Try Adam’s methods
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A-stable Implicit Adams methods

Trapezoidal
qn+1 _ qn

At (an+1 + Lq”)

N =
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A-stable Implicit Adams methods

Trapezoidal
qn+1 _ qn

At (an+1 + Lq”)

N =

AM2* (Nevanlinna and Liniger, 1979)

Q" —q" 3, 1y nd
Ar a4 tgla
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A-stable Implicit Adams methods

Trapezoidal
qn+1 _ qn

At (an+1 + Lq”)

N =

AM2* (Nevanlinna and Liniger, 1979)

Q" —q" 3, . 1 ng
h B I -L
At -9 Tz
Al22 (new)

qn+1 — qn S n+1 n 3 n—1
—=-L —L —-L

At 44 Q + 4t
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The Explicit Step

3-step Adams-Bashforth: AB3

R e ) (o)

@ Optimal 3rd-order explicit Adams method
@ Treats oscillatory solutions well

Dale Durran (Atmospheric Sci.) MetStrom Conference 2011 University of Washington

9/30



Oscillations Forced at Two-Frequencies

@—iw + jw
at Lq Hg

@ wy is the high-frequency forcing.
@ wy is the low-frequency forcing.
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Leapfrog-trapezoidal amplification factor

No Asselin, no off-centering
|A| < 1 throughout white region
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Leapfrog-trapezoidal amplification factor

Stable whenever the explicit part alone would be stable

4
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Leapfrog-trapezoidal amplification factor

Stable whenever |wi | < £|wyl; here £ =1

4
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Influence of Asselin filtering and off-centering
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Influence of Asselin filtering and off-centering

Off-centering the trapezoidal spoils stability in limit wyAt — 0.
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Amplification factors for other schemes

b) BDF2/BX22

f) BI22/BX32

-4 -2 0 2 4 -4 -2 0 2 4
o At o At
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Al22/AB3 stability region
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Al22/AB3 stability region

Stable whenever |wy | < {|wyl; here £ = 1.23

4

At

T 2
38

4

e) Al22/AB3

0
-4 -2 0
O)L At
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Compressible Boussinesq System

0 0 oP
(81‘+U8x)u+8x = 0, (1)
—~
0 0 oP
(Gi+Yse) "+ 52 = o @
~ b
o 0 .
<8I‘+U6x>b+NlW = 0, )
0 0 o (Ou  Oow\
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Explicit or implicit buoyany?

Buoyancy explicit: Stability condition is
(|UKkmax| + N)At < C,

where C is
@ 1 for T260/LF without Asselin filtering or off centering
@ 0.72 for Al22/AB3
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Explicit or implicit buoyany?

Buoyancy explicit: Stability condition is
(|UKkmax| + N)At < C,

where C is
@ 1 for T260/LF without Asselin filtering or off centering
@ 0.72 for Al22/AB3

Buoyancy implicit: Stability condition becomes

| UKmax| At < C.
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Sound waves implicit; buoyancy explicit

T26/LF Al22/AB3
50
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gravity waves
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z z
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Sound waves and buoyancy implicit

200 T26/LF Al22/AB3 BDF2/BX22
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Nonhydrostatic limit: wave speed slower than U

T20/LF AI22/AB3 BDF2/BX22

200
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2

— 100
<
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A, (km) A (km) ., (km)

Dashed line: &y At = C, where

oL = |UK|.

Dale Durran (Atmospheric Sci.) MetStrom Conference 2011 University of Washington 22/30



Wave speed exceeds U

T20/LF Al22/AB3 BDF2/BX22

Solid line: oy /& = &£, where

i 1 T20LF
ng = 2|2|1/2; ¢=123 AI22/AB3
(K2 + ) 3 BDF2/BX22
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Numerical simulations

Fixed spatial discretization, explore convergence in time to
compressible solution computed with very small At.
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Numerical simulations

Fixed spatial discretization, explore convergence in time to
compressible solution computed with very small At.

@ Nonlinear compressible Boussinesq system, ¢s = 350 m s~
@ Mean shear flow, 5 < U(z) < 15

@ Constant mean static stability, N = .01 s~

@ Periodic lateral BC, rigid top and bottom

@ Buoyancy waves generated by compact nondivergent forcing
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Time-converged solution

u contours at 3000 s; shading shows streamlines of forcing field
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Empirical convergence rates
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Explicit buoyancy can improve accuracy

@ forward biased T20/LF (6 = 0.6)

@ AlI22/AB3
107" ‘ ‘ ‘ ‘ ‘
107} |
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1< max CFL: Method
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Test 3: Nonlinear Euler Equations

Improvement at almost no CPU cost

14% reduction in maximum At for Al22/AB3 relative to Asselin-filtered T20/LF
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Conclusions

New IMEX method Al22/AB3
@ Higher accuracy than T26/LF
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Conclusions

New IMEX method Al22/AB3

@ Higher accuracy than T26/LF
@ Better stability

o Computational modes strongly damped
o Diffusion handled better
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Conclusions

New IMEX method Al22/AB3

@ Higher accuracy than T26/LF
@ Better stability

o Computational modes strongly damped
o Diffusion handled better

@ Minimal extra cost relative to Asselin-filtered leapfrog-trapezoidal
scheme

@ 14% reduction in maximum At
o One extra level of storage for explicit forcing terms
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