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Motivation

� Simulation of two phase wind tunnel experiments

� Development of robust, accurate, and efficient numerical schemes for
simulations of population balance systems

� Population balance system describe evolutions of the droplet size distribution,
not the behavior of individual droplets

� Modeling point of view: coupled systems of

� Navier–Stokes equations (turbulent air flow, 3D)
� Droplet size distribution equation (droplets, integro partial differential

equation, 4D)

=⇒ Equations are defined in domains with different dimensions
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Motivation

� Simulation of wind tunnel experiments, comparison of numerical and
experimental data (Bordás, Thévenin)

Experimental Data

� Available on three planes
perpendicular to the flow direction

� Used as boundary condition for
simulation (inlet) and for evaluation
of the results (outlet)

� Important data: flow velocity, droplet
size distribution, droplet velocity

Experiment

� Horizontal wind tunnel

� Two phase flow

� Turbulent air flow
� Water droplet distribution

� Droplet motion in turbulent flows

� Aggregation of droplets
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Mathematical Model

Turbulent flow

� Incompressible Navier–Stokes equations

∂tu−2∇ · (Re−1D(u))+(u ·∇)u+∇p = 0 in (0,T ]×Ω

∇ ·u = 0 in [0,T ]×Ω

� Flow domain and boundary conditions given by experimental data

� Grid incorporates points of measurements as nodes

� Turbulence modeling

� Variational multiscale finite element VMS method, John, Kaya (2005)
� Variational multiscale finite element VMS method with adaptive large scale

space, John, Kindl (2010)
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Mathematical Model

� 4D droplet size distribution equation
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� In the model are included

� Motion in turbulent flow =⇒ transport-dominated equation
� Growth in supersaturated air
� Aggregation
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Mathematical Problem

� 4D droplet size distribution equation
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� Droplet-size distribution
� Droplet velocity (Navier–Stokes Equation-(space-time averaged slip

velocity))
⇒ coupling to the Navier–Stokes equation

� Growth constant
� Droplet diameter
� Aggregation kernel
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Aggregation

� Convolution integral
� Simple two-loop scheme very slow
� Integrand nearly singular: if standard quadrature rules are used =⇒ poor

accuracy =⇒ considerable loss of mass
� Current approach: evaluation of the aggregation term bases on a preprocessing

step
f (d[ j])

∫ dmax

dmin

κagg(d[ j],d′) f (d′)dd′

= f (d[ j])
Na−1

∑
i=1

∫ d[i+1]

d[i]
κagg(d[ j],d′) f (d′)dd′

≈ f (d[ j])
Na−1

∑
i=1

f (d[i+1])+ f (d[i])
2

∫ d[i+1]

d[i]
κagg(d[ j],d′)dd′︸ ︷︷ ︸

preprocessed integrals

� Remaining integrals depend only on the kernel and the grid for the internal
coordinate, can be computed in preprocessing step

� More efficient and accurate than simple approach
� But still some loss of mass
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Aggregation

� Work in progress

� More efficient scheme from Hackbusch (2007)
� Implement scheme on basis of mass instead of diameters
⇒ Singularity smaller
⇒ Smaller numerical errors expected

� Aggregation kernel

� Model consists of two parts: Brownian motion and shear induced motion

κagg = Cbrown
2kBT
3µ

(d +d′)(
1
d

+
1
d′

)+Cshear
√

2∇u : ∇u(d +d′)3

� Cbrown and Cshear: unknown parameters
� Parameter identification by comparison with experimental data
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Numerical Methods for Transport-Dominated Equations

� Efficient and accurate numerical method for the 4D transport equation
necessary; see John, Roland (2010)

� Available methods

� Forward/backward Euler + finite difference upwind (fast, rather inaccurate)
� Crank–Nicolson + linear FEM–FCT; Kuzmin (2009) (rather slow, accurate)
� Finite Difference ENO schemes with explicit TVD Runge–Kutta

� Work in progress

� FEM–FCT with Group FEM, Fletcher (1973)
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Simulation of the Experiments – The Flow Field

� Ω : 51 x 46 x 19 nodes, hexahedral
grid

� ∆t = 0.001

� Q2/Pdisc
1 finite element method

� Crank–Nicolson scheme

� Simulations with the code MooNMD

Snap shot of the computed
velocity field
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The Flow Field - - Flow around a cylinder

� coarse grid for the multiscale solver
� d.o.f.: 1 000 000, hexahedral grid

� time step: ∆t = 5e−3
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Simulation of the Experiments – Calibration of Parameters

� Calibration of the parameters Cbrown and Cshear of the aggregation kernel

� Used method for calibration: forward Euler scheme

� Good agreement for suitable chosen parameters Cbrown = 1.5e6 and
Cshear ∈ [0.01,1]
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Simulation of the Experiments – Aggregation vs. Growth

� Simulations without growth (supersaturation = 0)

� Dominant aggregation corresponds to physics of the problem
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Simulation of the Experiments – Robustness w.r.t. Methods

� Different length of the time step

� ∆t = 10−3 vs. ∆t = 5 ·10−4
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Simulation of the Experiments – Robustness w.r.t. Methods

� Different turbulence models

� Finite element VMS method with projection space P0
� Finite element VMS method with adaptively chosen projection space
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Simulation of the Experiments – Robustness w.r.t. Methods

� Laminar flow – extension of experimental mean velocity at inlet to the whole
domain

� Goal: check the influence of the turbulence on the psd
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Simulation of the Experiments – Robustness w.r.t. Methods

� Different methods for the population balance equation

method computing time per time step
forward Euler + finite difference upwinding 178s ≈ 3min.
backward Euler + finite difference upwinding 329s ≈ 6min
explicit Runge–Kutta + Eno 195s ≈ 3.25min
Crank–Nicolson + FEMFCT 857s ≈ 14.5min
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Conclusions and Outlook

� Conclusions

� Calibration of parameters in aggregation kernel to match experimental data
could be performed

� Experiments could be simulated quite accurately
� Results robust with respect to numerical methods
� Flow field around cylinder calculated

� Outlook

� Next experiment: flow around a cylinder:
Droplet Distribution has to be calculated

� Alternative methods for transport equation

� FEM–FCT with Group FEM, Fletcher (1973)

� Aggregation term

� Formulation in terms of mass instead of diameter
� Method by Hackbusch
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