International MetStröm Conference 2011

The influence of cloud turbulence on droplet growth and precipitation

Theres Franke, Rudie Kunnen and Heike Noppel

Questions to be answered:

- Which influence has the local cloud turbulence on the collision efficiency of small cloud droplets and thus on the coagulation function?
- What is the impact of turbulence on cloud micro physics compared to the traditional approach disregarding this effect?

Mechanisms and processes involved cover a large range of scales

- Collision of small droplets
- Local turbulent structures
- Distribution of precipitation
- \rightarrow Different simulation models

LES of cumulus clouds with explicit simulation of cloud droplets

- Simulate clouds by simulating a large number of water droplets explicitly
 - Combination of LES model
 PALM and Lagrangian particle model
- Advantages:
 - Enables e.g. analysis of droplet spectra, droplet concentrations, droplet paths
 - Useful to investigate turbulence effects, entrainment processes …

LES of cumulus clouds with explicit simulation of cloud droplets Method (I)

- Simulation of enormous particle numbers like in real clouds is impossible
 - Ensembles of water droplets are simulated
 - Concept of weighting factor is used:

 $A_{i} = \frac{real \ volume \ of \ droplets}{simulated \ volume \ of \ droplets}$

Every simulated droplet stands for a very high number of real droplets

- Equation of motion including friction and gravity is solved for each simulated droplet
- Droplets can change size by evaporation/condensation and collision
- Liquid water is only/completely transferred within cloud droplets

LES of cumulus clouds with explicit simulation of cloud droplets Method (II)

During every time step:

Advection

• Using non-linear drag law (Clift, 1978)

Condensation

Calculated from diffusion equation (Mason, 1971)

Collision

• Using continuous growth model (e.g. Rogers, 1976)

 $\frac{dR}{dt} = \frac{1}{3R^2} \int_0^R r^3 \cdot K(R,r) \cdot n(r) dr \text{ where } K(R,r) \text{ is the collision kernel}$

LES of cumulus clouds with explicit simulation of cloud droplets Simulation setup of idealized case

- Cloud is initialized by a warm air bubble (1200m x 150m x 150m) near the bottom, ΔT = 0.2 K
- Domain size: 1.2 km x 4 km x 4 km
 Resolution: 20 m
- Particles are released every 4.5 m in whole model domain
- Initial particles size: 1 μm
 Initial weighting factor: 9 •10⁹
- Total number of particles: ~ 150 Million
 Particle concentration: 100 cm⁻³

LES of cumulus clouds with explicit simulation of cloud droplets Influence of turbulence (I)

Collision kernel without turbulence effects

 $K(\mathbf{R},\mathbf{r}) = \pi (R+r)^2 \cdot E^g \cdot [|u(R) - u(r)|]$

 Collision kernel with turbulence effects from Ayala et al., 2008 and Wang et al., 2008

$$K(R,r) = \pi(R+r)^2 \cdot \eta_E E^g \cdot 2\langle |w_{Rr}| \rangle \cdot g_{Rr}$$

- E^g = collision efficiency
- η_E = turbulent enhancement factor for collision efficiency
- w_{Rr} = radial relative velocity
- g_{Rr} = radial distribution function

LES of cumulus clouds with explicit simulation of cloud droplets Influence of turbulence (II)

LES of cumulus clouds with explicit simulation of cloud droplets Influence of turbulence (II)

 \rightarrow Turbulence enhances the droplet growth

DNS with Lagrangian particles and collision detection

Equation of motion for small, heavy particles $(\rho_p >> \rho_f \text{ and } a << \eta)$

$$\frac{d\mathbf{v}}{dt} = \frac{f_D}{\tau_p}(\mathbf{u} - \mathbf{v}) + \mathbf{g}$$

Particle response time
$$2a^2$$

 $\tau_p = \frac{\rho_p}{\rho_f} \frac{2\alpha}{9\nu}$

Nonlinear drag correction $f_D = 1 + 0.15 Re^{0.687}$

Divide particles into subdomains; collision check only within subdomain (cell-index method)

"Ghost particles" assumed, i.e. collisions detected without interaction

Flow domain

Domain of characteristic size L = 0.1 m

Turbulence generated at inlet, swept across domain by prescribed mean flow U = 1 m/s

1.88 million particles of radius 5, 10, ..., 50 μm

A turbulent kernel

 $R_{\lambda} = 78.6, \ \epsilon = 267 \ \mathrm{cm}^2/\mathrm{s}^3$

 g_{12} peaks at $a = 25 \ \mu m$ Preferential concentration $<|w_r| > \neq 0$ also for equal-size particles Effect largest for 45-50-µm combination: 45% of $<|w_r|$ > due to turbulence

Different flow conditions

Rain rate at surface in mm/h vs simulation time from results of 1D rainshaft model with continental initial spectrum for gravitational and several turbulent kernels at $\varepsilon = 400 \text{ cm}^2/\text{s}^3$

Conclusions & Outlook

- Effects of turbulence on droplet growth investigated with multi-scale approach
- Collision kernel evaluated; its parameterization is next step
- Application of parameterized collision kernel in LES of a cloud as well as in larger-scale weather/climate simulation

Thank you for listening!