Turbulence structure in a diabatically heated forest canopy composed of fractal Pythagoras trees

Josef Schröttle

Universität München (LMU)

Andreas Dörnbrack

Institut für Physik der Atmosphäre (DLR)

Piotr K. Smolarkiewicz

National Center for Atmospheric Reseach, Boulder (NCAR)

Outline

I. Motivation

II. Method

- a) Ensemble of Fractal Trees
- b) Heated Immersed Boundaries
- c) Stretched Grid 100m to 10cm

III.Results

a) Plant Scale Approachb) Diabatic Flow Structure

Pythagoras Tree (below) and algorithm described (above)

IV. Outlook

Motivation

In **Boundary Layer Meteorology** measurements are taken at the Microscale from meters **down to a few cm**.

http://www.eol.ucar.edu/deployment/field-deployments/field-projects/chats-project

Eddy Covariance Sensors in a Walnut Canopy (left) and infrared image of heterogeneously heated trees and trunk space (right)

Field Scale Approach

"Forest as a porous body of horizontally uniform **leaf** area density: LAD(z) with constant drag coefficient c_{p} "

(Shaw & Schumann 1992)

	Shaw & Schumann (BLM, 1992)	Dupont & Brunet (JFM, 2009)	Finnigan, Shaw & Patton (JFM, 2009)
ΔΧ	2 m	2 m	1 m
Н	60 m	200 m	100 m
LAI	2, 5	2, 5	
Т	10 min		2 hours

Is it possible to **close** the **scale gap** by state-of-the art multiscale numerical simulations?

How to resolve tree elements?

Nature reminds us of **fractal geometry** e.g. lightnings, coral reefs, clouds and of course trees!

We use a mathematical algorithm, to generate **Pythagoras trees** of arbitrary fractality.

Fractal Tree

A fractal tree has already been simmulated in a RNS!

Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF COMPUTATIONAL PHYSICS

Journal of Computational Physics 225 (2007) 427-448

www.elsevier.com/locate/jcp

Modeling turbulent flow over fractal trees with renormalized numerical simulation

Stuart Chester^a, Charles Meneveau^{a,*}, Marc B. Parlange^{a,b}

 \rightarrow tree drag C_T converges after **3 branch** generations

Plant Scale Approach

- Ensemble of 16 trees, vary in a gaussian way:
 - -Height
 - Fractality
 - -Position
 - -Porosity

- Thermal Stability of ambient air (Shaw 1988)
- Heated Tree Crown (EAGLE Campagne 3K)
- Vertically Stretched grid across surface layer (100m,10m,10cm)

EULAG with Immersed Boundaries

$$\begin{aligned} \nabla \bullet (\rho_b \mathbf{v}) &= 0 \\ \frac{d\mathbf{v}}{dt} &= -\nabla \pi' + g \frac{\theta'}{\theta_b} + F' - \underline{\beta} (\mathbf{v} - 0) \\ \frac{d\theta'}{dt} &= H - \mathbf{v} \bullet \nabla \theta_e - \underline{\beta} (\theta - \theta_c) \\ \psi' &= \psi - \psi_e \quad \psi = u, v, w, \theta, \dots, \quad \pi' = \frac{p - p_e}{\rho_b} \end{aligned} \qquad \begin{aligned} & \mathbf{Boussinesq} \\ \mathbf{Approximation} \\ \mathbf{\rho_b} &= 1.025 \text{ kg/m}^3 \\ \mathbf{\Theta_b} &= 300 \text{ K} \\ \mathbf{\rho_b} &= 1000 \text{ hPa} \\ \mathbf{\Theta_c} &= \mathbf{\Theta_e} + 3.15 \text{ K} \end{aligned}$$

- Nonhydrostatic, Anelastic, Navier-Stokes, etc.
- "Multidimensional Positive Definite Advection Transport" (MPDATA)
- **LES** type closure (1.5 order, prognostic tke)
- Successfully used over a wide range of scales in GFD

"EULAG, a computational model for multi-scale flows", Prusa et all. 2008

Experimental Setup

Stretched vertical coordinate

- $\Delta x = \Delta y = 5 \text{ cm}$
- ∆z = **12cm**, ..., **12m**

<u>Domainsize</u>

Gridpoints 384 x 384 x 384 19.2 m x 19.2 m x 108 m **Periodic** lateral boundaries

<u>Timesteps</u>

 $\Delta t = 0.002 \, s$

nt=180 000, Time=360s

Moving average:

Online statistics over last 5 min

Imrsb. w/ a prescribed Temp. are an extension to "Building resolv. LES & comparison with windtunnel studies", Smolar. JCP 2007

Runs	N [1/s]	ΔT(tree) [K]	U [m/s]
1) neutral	0	0	2.8
2) n+heat	0	3.15	2.8
3) stable	0.05	0	2.8
4) s+heat	0.05	3.15	2.8

Neutral (Snapshot 160s)

Momentum Transport

MetStröm Conference 2011 in Berlin

Berlin

Stable Run (average 360s)

Temperature Fluctuation (average 360s)

MetStröm Conference 2011 in Berlin

Temperature Fluctuation (average 360s)

MetStröm Conference 2011 in Berlin

Neutral + Heated Run (average 360s)

MetStröm Conference 2011 in Berlin

Velocity Profile for Diabatic Heating

Momentum Transport for Diabatic Heating

Conclusions

- Shear, vorticity bands, plumes and wake vortices are generated by the small scale tree elements.
- We are using fractal trees and immersed boundaries, mean quantities, such as <u>, <u'w'>, <u'u'>, <w'w'> agree with former field scale simulations.
- Heat flux profile of the neutral + heated run reminds of a convective boundary layer with an entrainment zone for the stable + heated run. A stable stratification developes in the trunk space.
- **Diabatic heating** enhances the **moment transport** by a **factor of 2** for neutral and by a **factor of 1.5** for stable conditions. Shear layers develope aloft the tree canopy.

Outlook

 Increase resolution and find impact of fractality on e.g. energy spectrum

- Ergodic Therorem cannot be applied here, so we have to use continuous methods in time e.g. wavelets
- Visualize in 3D, momentum transport (sweeps, ejections) & compare data with observations!

Thank you for your attention!

josef.schroettle@physik.uni-muenchen.de

