New Results about the Cloud-Top Entrainment Instability

Juan Pedro Mellado, Bjorn Stevens

Max Planck Institute Meteorology, Hamburg

Heiko Schmidt Brandenburg University of Technology, Cottbus

Norbert Peters RWTH Aachen University

International MetStröm Conference, FU Berlin 6-10 June 2011

MetStröm DFG programme 1276

Max-Planck-Institut für Meteorologie Brandenburgische Technische Universit Cottbus

Outline

The Cloud-Top Entrainment Instability

Evaporative Cooling and Clouds

Evaporation at cloud/free-atmosphere interface \rightarrow cooling \rightarrow convection:

The Cloud-Top Entrainment Instability

Buoyancy Reversal

The buoyancy may not follow a linear relation wrt conserved scalars:

sign change \Rightarrow buoyancy reversal

The Cloud-Top Entrainment Instability

Stratocumulus Top

In addition, inversion at the cloud boundary:

Free atmosphere

adapted from D. Randall, J. Atmos. Sci., 1980

Cloud-Top Entrainment Instability (Randall, 1980; Deardorff, 1980)

Outline

The Cloud-Top Entrainment Instability

DNS, grid size $2048 \times 2048 \times 1536$ (JPM, 2010; JPM et al., 2010)

Instantaneous cloud-top $\{\mathbf{x}: \chi(\mathbf{x},t) = \chi_s\}$

Instantaneous cloud-top $\{\mathbf{x}: \chi(\mathbf{x},t) = \chi_s\}$

Cloud-top not broken and flat:

Two time scales associated w/ buoyancies b_1 , $|b_s|: D = |b_s|/b_1 \ll 1$.

Molecular transport controls the system

Convection Layer

Convection Layer

$$\frac{d}{dt}\int_{-\infty}^{z_i} \langle \chi \rangle dz = \kappa \frac{\partial \langle \chi \rangle}{\partial z} (z_i, t) - \langle w' \chi' \rangle (z_i, t) + \chi_i w_e \simeq w_e$$

Then, w_e determines also scaling inside the turbulent zone.

From functional dependence between b and χ , reference buoyancy flux

$$B_s = w_e |b_s| / \chi_s = (0.1 f_1 \chi_c^{2/3} / \chi_s) (\kappa b_s^4)^{1/3}$$

and then **convection scales**

$$z^* = (1/B_s) \int B dz$$
 , $w^* = (z^*B_s)^{1/3}$

characterize (some statistics of) the turbulent region (Deardorff, 1980)

Turbulent Velocity Fluctuations

- Self-preservation.
- Anisotropy.
- Inhomogeneity.

Temporal Evolution of Convection Scales

Integrating transport equation for $q^2/2$,

$$\frac{\partial q^2/2}{\partial t} = -\frac{\partial T}{\partial z} + B - \varepsilon \,,$$

Temporal Evolution of Convection Scales

Integrating transport equation for $q^2/2$,

Temporal Evolution of Convection Scales

Solution:

$$z^*(t) = z^*(t_1) \left[1 + (2f_2/3) \frac{t - t_1}{[z^*(t_1)^2/B_s]^{1/3}} \right]^{3/2}$$
$$w^*(t) = (1/f_2) dz^*/dt , f_2 \simeq 0.5$$

Scalings:

$$z^* \propto t^{3/2}$$
 $w^* \propto t^{1/2}$ $b^* \propto t^{-1/2}$

Time scale:

 $(z^{*2}/B_s)^{1/3}$

Stratocumulus

Turbulence does not break the cloud top, but enhance mixing up to a linear entrainment rate.

Some numbers:

 $w_e\simeq$ 0.16 mm/s; $h\simeq$ 0.1 m; $B_s\simeq$ 10 $^{-5}$ m $^2/{\rm s}^3$; $z^*\simeq$ 2.5 m; $w^*\simeq$ 30 mm/s.

From previous growth rates, 100 m reached in about 45 min. Then, $w^*\simeq$ 0.1 m/s; still \ll measurements of 1 m/s (radiative forcing).

Structure:

Vertical interface displacement $\delta = w^{*2}/b_1$ small and $Ri^* = z^*/\delta \propto t^{1/2}$. Internal Richardson number $Ri_{(I)} = h/\delta \propto t^{-1}$ decreases, but order 1 only after $z^* = 300$ m.

Conclusions

The cloud-top entrainment instability cannot explain break-up

- Evaporative cooling effects are one order of magnitude too small.
- Buoyancy reversal w/o mean shear depends on molecular props.

Mean Vertical Shear

 $\{\nu, \, \kappa, \, \Delta b, \, b_s, \, \chi_s, \, \Delta u\} \quad \Rightarrow \quad \{Pr, \, D = -b_s/\Delta b, \, \chi_s, \, (\Delta u)^3/(\nu \Delta b)\}$

Turbulent Inversion Layer

Turbulent Inversion Layer

Formulation

Two-fluid formulation ($St \simeq 0.01$, $Sv \simeq 0.3$, $\phi_d \simeq 10^{-6}$)

Mixture fraction χ (Albrecht et al. 1985; Bretherton 1987; JPM et al. 2010)

Governing Equations Boussinesq + Mixture Fraction χ + Non-Linear Eqn. State

$$\partial_{t}u_{k} = -\partial_{i}(u_{k}u_{i}) - \partial_{k}p + \nu\partial_{i}\partial_{i}u_{k} + b\delta_{k3}, \ \partial_{i}u_{i} = 0$$

$$\partial_{t}\chi = -\partial_{i}(\chi u_{i}) + \kappa\partial_{i}\partial_{i}\chi$$

$$b = b^{e}(\chi; b_{1}, b_{s}, \chi_{s})$$
Parameter space:
$$\{\nu, \kappa, b_{1}, b_{s}, \chi_{s}\}$$

$$\downarrow$$

$$\{Pr = 1, D = -b_{s}/b_{1}, \chi_{s}\}$$

Mean Entrainment Rate

Marginally stable thermal boundary layer $\chi_c h$:

$$\frac{(\chi_c h)/(\kappa/h)}{\nu/(\chi_c h|b_s|)} \simeq 10^3 \qquad \Rightarrow \qquad h \simeq (10/\chi_c^{2/3})(\kappa^2/|b_s|)^{1/3}$$

Previous Work

Siems et al. (1990), Shy and Breidenthal (1990), Siems et al. (1992)

- Tank experiments with liquid mixtures. Mechanically driven ICs.
- Definition of the problem in terms of $D=-b_s/b_1$ and $\chi_s.$
- Sims. Almost laminar behavior for $D\simeq 0.04$ (real conditions).
- Small reversal ($D\ll 1$) cannot explain cloud break-up.

Wunsch (2003)

- Stochastic models.
- Confirms previous results.
- Points to possible relevance of diffusion at cloud interface.

What is really going on at the interface?

Further Discussion

	z^*/h	$\eta/\Delta x$	z^*/λ_z	λ_z/η	u'/w^*	w'/w^*	Ret	Re_{λ}	Re^*	Ri [*]	Ra^*
A11	24	1.2	19	28	0.84	0.74	1800	220	4800	590	$0.4 imes 10^9$
A21	39	0.9	26	31	0.86	0.78	2400	250	8000	293	$1.1 imes 10^9$
A12	39	1.2	19	28	0.90	0.76	1600	200	4800	716	0.5×10^{9}

TABLE 2. Length-scale ratios, turbulence intensities and derived quantities at the final time t_2 . Reynolds numbers $Re_t = (q^2/2)^2/(\varepsilon v)$, $Re_\lambda = w'\lambda_z/v$ and $Re^* = z^*w^*/v$; convection Richardson number $Ri^* = b_1 z^*/w^{*2}$; Rayleigh number $Ra^* = z^{*3}|b_s|/(\kappa v)$; Nusselt number $Nu^* = w_e z^*/\kappa = z^*/h$. Maximum values are used for the mean turbulent dissipation rate ε and the turbulence intensities.

- Unsteady free convection; $Nu^*(t)/(Ra^*(t))^{1/3} = 0.1f_1\chi_c^{2/3}$ const.
- Turbulent mixing across a density interface; $Ri^*(t)$ increasing.
- Stratocumulus.

