

Idealized Tropical Cyclone Scenarios as Test Cases for Goal Oriented Adaptive Methods

Leonhard Scheck, Sarah Jones, Martin Baumann, Vincent Heuveline, Werner Bauer, Almut Gassmann

SPP METSTRÖM / PROJECT "GOAL ORIENTED ADAPTIVITY FOR TROPICAL CYCLONES"

Motivation

Forecasting development and motion of tropical cyclones (TCs): interacting processes on scales between <1km (convection) and ~10,000km have to be represented adequately

\rightarrow multi-scale problem

- Common approach: Nesting
- Promising new (for meteorology) technique: Goal oriented adaptivity

Goal oriented adaptivity

Idea: Given a quantity of interest (goal functional) J, adapt the grid in a way that minimizes the error in J (e.g. under the constraint that the computational effort is constant)

Realisation: For each cell, estimate contribution to error in J using an a posteriori error estimator. Increase resolution where error is large.

Goal oriented adaptivity

Idea: Given a quantity of interest (goal functional) J, adapt the grid in a way that minimizes the error in J (e.g. under the constraint that the computational effort is constant)

Juni 2011, Berlin

Realisation: For each cell, estimate contribution to error in J using an a posteriori error estimator. Increase resolution where error is large.

nonlinear model

Idealized Tropical Cyclone Scenarios as Test Cases for Goal Oriented Adaptive Methods

Test Cases: Idealised TC Scenarios

- Wide range of scales, large potential for adaptive grids
- Contain dynamical processes important for real TCs
- Challenging: High sensitivity to small perturbations / numerical errors

• Work in progress: 3D versions, vortex in vertical shear, moisture effects

TC-front interaction

- Strongly idealised: non-divergent barotropic model
- Finite difference code (non-adaptive) reference runs
- Front modelled as step between two regions of constant absolute vorticity \rightarrow jet-like velocity profile
- Initial state: jet profile
 + vortex south of front
- Several different vortex profiles including vortices with core of positive vorticity surrounded by ring of negative vorticity (mimicks TC outflow)

Metström-Konferenz Juni 2011, Berlin Scheck, Jones, Baumann, Heuveline, Bauer, Gassmann:

Idealized Tropical Cyclone Scenarios as Test Cases for Goal Oriented Adaptive Methods

06.06.11

TC-front interaction

- TC circulation deforms interface \rightarrow vorticity anomalies
- Anomaly circulation → cyclone steered northwards, wave propagates along interface

7

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions \rightarrow strong impact on TC-front interaction
- High sensitivity to initial wave phase, extreme case: **bifurcations** due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

- Frontal waves present in initial conditions
 → strong impact on TC-front interaction
- high sensitivity to initial wave phase, extreme case: bifurcations due to by arbitrarily small perturbations

Metström-Konferenz Juni 2011, Berlin

Origin of the bifurcation

- Points R, T: zonal translation velocity = phase speed meridional translation velocity = 0
 → stationary points in the frame moving with the wave
- Point T: TC overtakes trough or vice versa?
 Unclear, vastly different consequences → bifurcation

Metström-Konferenz Juni 2011, Berlin

Origin of the bifurcation

Tracks for different initial phases in the frame moving with the wave: Influence of R, T as expected, deviations due to wave excitation

Metström-Konferenz Juni 2011, Berlin

TC-TC interaction

- Occurs ~2 times per year, can be problematic for track prediction
- Influences motion (Fujiwara) and structure (shear)
- High sensitivity to initial TC separation (extreme case: bifurcation between merger and non-merger cases)

Vorticity evolution for initial TC separations 370km (top) and 400km (bottom) in the first 48 hours.

 \rightarrow High sensitivity to TC displacement in initial coditions for both scenarios.

Linear sensitivity analysis

- Dual solution / adjoint based sensitivity: optimal perturbations that have the largest effect on goal functional J
- Sensitivity information is used for targeted observations, ensemble perturbations, understanding dynamics, grid adaptation (by-product sensitivity).
- Idealised scenarios: Interpretation of sensitivity much easier
- Goal functional: energy or vorticity, integrated over TC core, → correlated with TC position
- Results similar to leading energy singular vector

Initial and evolved optimal perturbations

Initial perturbations:

Evolved perturbations:

Aligned with comoving / corotating streamlines

Vorticity dipoles \rightarrow effect of prturbations is a displacement of the TCs

Metström-Konferenz Juni 2011, Berlin Scheck, Jones, Baumann, Heuveline, Bauer, Gassmann:

Idealized Tropical Cyclone Scenarios as Test Cases for Goal Oriented Adaptive Methods

Linear sensitivity at the bifurcation

How does bifurcation (non-linear process) influence sensitivity (linearity assumed)?

- differences in growth factor, but similar spatial distribution,
- → even if trajectory is on wrong branch (due to insufficient resolution or observation errors) the sensitive regions close to the ones of the correct branch result (for this scenario)

h-adaptive TC-TC interaction run – cycle 0

- Degrees of freedom: 36,864
- Position Error [km]: 1504
- Relative error in J:

Merged! Wrong branch of the bifurcation!

Static grid, refined after each cycle Goal functional: Vorticity, integrated over

core of left TC

h-adaptive TC-TC interaction run – cycle 1

h-adaptive TC-TC interaction run – cycle 2

- Degrees of freedom: 123,172
- Position Error [km]: 3.4
- Relative error in J: 2.9e-3

Factor ~20 better than on uniform grid with same number of DoFs

 \rightarrow Baumann et al. poster

r-adaptive runs with shallow-water ICON

Metström-Konferenz Juni 2011, Berlin

Summary

- Goal oriented adaptivity is a promising approach for multiscale problems related to tropical cyclones (TCs)
- We investigated idealised TC scenarios, including TC-front and TC-TC interaction
- We found a high sensitivity of the solutions with respect to the initial TC position, in the most extreme case bifurcations
- Linear sensitivity analysis: Optimal perturbations cause TC displacement, are initially aligned with separatrices
- Structure of optimal perturbations does not change dramatically at bifurcation points
- Adaptive runs yield accurate results for a strongly reduced number of DoFs

Publications on idealised TC scenarios:

- Scheck, Jones, Juckes, 2011: *The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model, Part I: Zonally aligned front,* J. Atmos. Sci., **68**, 3, p. 405-419
- Scheck, Jones, Juckes, 2011: *The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model, Part II: Frontal waves,* J. Atmos. Sci., **68**, 3, p. 420-429
- Scheck et al. 2011: Singular vectors for the interaction of a tropical cyclone and a tropopause front in a barotropic Model, in prep.