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Motivation

• Interested in tough problems characterised by multiple scales, complex geometries, 

coupled multi-physics, ..., e.g.: 

– linking estuary, coastal, shelf and deep ocean regions;  

– explicitly representing (more, not all) processes crucial to the overturning circulation; 

– merging industrial CFD and GCM-type applications of numerical models

• Flexibility of unstructured meshes and the power of finite element/control volume methods

• BUT these come with additional computational costs!

• Can we off-set the extra costs by making maximal use of mesh flexibility?

• For transient systems this points to the use of dynamic mesh adaptivity in response to the 

discrete system’s changing resolution requirements

• Use/develop a highly flexible modelling approach (mesh, discretisation, physics, coding) 

to allow a wide range of industrial & geophysical systems to be simulated
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CFD motivation/validation: drag calculation in flow past a 

sphere at a range of Re numbers

Computed drag coefficient compared against correlation 

(from Brown and Lawler, 2003) with lab data

Numerical

Lab

Resolution of the geometry/initial mesh is 

preserved through simulation, more 

resolution is added on original facets –

conserving domain volume



Movie of the velocity magnitude on 

a slice
Error metric guiding adaptivity has been chosen here 

to focus resolution on the boundary layer and 

separation region, not on the wake

650k P1 nodes
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Mesh optimisation operations: altering the node-count

Edge split

If an edge length is too large split it and 

create new elements.

For simplicity here place the new node at the 

mid-point of the edge. 

Edge collapse

If an edge length is too small collapse it and 

delete all elements that contained the edge.

For simplicity here collapse to the mid-point of 

the edge, unless (internal or external) 

geometrical constraints apply.



Mesh optimisation operations: altering element alignment               

Very important for anisotropy, non-hierarchical approach

Edge-to-face and face-to-edge swapping

For two elements sharing a face whose union is 

convex, delete the face and connect the other two 

nodes, creating three elements.

If three elements surround an edge the inverse 

operation can be considered.

Edge swapping

For four elements surrounding an edge 

consider deleting that edge and replacing 

with one of the other two options. The 

number of elements is preserved.

NB. These operations do not change the 

node-count and make minimal changes to 

the element-count, but importantly they do 

change the anisotropic resolution



Mesh optimisation operations: smoothing

Node movement

Move nodes so as to improve the quality of the 

surrounding elements.

Also allow movement constrained to interior or 

exterior surfaces

In combination, the above operations alter both the resolution and alignment of the mesh, 

yielding a mesh closer to optimal in terms of required edge lengths

See Pain et al., 2001 for further details of the approach used here. 

And work by George, Freitag, Ollivier-Gooch, Shephard, ... for other similar approaches and 

improvements.

NB. We are currently developing a new OpenMP based optimisation library in 1,2,3D for hybrid 

(OpenMP+MPI) use – large number of functional evaluations and topological operations offers 

scope for significant speed-ups



• Lock halos: disallow all operations affecting halo elements

• Each process optimises elements it owns

– Some processes will now have more nodes/elements than 

others – poor load-balancing

• Perform load-balancing and data migration (Zoltan)

– Optimise the equality of work across processes

– Subject to the constraint of a small edge-cut (to minimise 

communication) 

– Weight the edges in terms of element quality – dissuade the 

new partition from going through previously un-optimised 

(halo) elements

• Repeat 

– To ensure all elements have been considered for optimisation

MPI parallelisation of mesh optimisation

This combines the parallelisation of adaptivity with load-balancing. Data 

migration costs shown to be minimal, later optimsation iterations have less work 



Dynamically load-balanced parallel adaptivity example (blue = halo)



Aside: a similar boundary perturbation approach has been used to 

allow us to perform mesh adaptivity on periodic domains 
(lots of ‘corner cases’ to consider with parallel+adaptive+periodic!)



How to describe desired edge length: Interpolation errors and metrics

• Interpolation error of scalar u over element e is given by

where H is the Hessian matrix associated with u. Straightforward extension for Lp norms.

• For practical use: drop the (O(1) mesh independent) constant, replace the vectors with 

element edges, and assume we have an edge/element centred H

• Equi-distribution of a (user-defined) interpolation error now looks like 

• We now have the definition of a metric space where equi-distribution of errors in physical 

space is equivalent to having a mesh of unit equilateral triangles/tetrahedra in metric space

• Use this definition of length in a mesh generator, or a mesh optimisation algorithm 

Basically a max curvature 

times the size of the 

element squared – cf. 1D



• Form an optimisation functional, in 3D we use:

• First term ensures good edge lengths of an element e, 
second term helps with element shape

• Evaluate lengths with respect to the metric                   

• Minimise the functional through the above series of 
local mesh operations

• NB. total metric is formed by combining metrics for 
multiple solution fields, with user-defined weightings 
for each, and applying constraints on max/min edge 
lengths, max. number of nodes and gradation to 
ensure smooth variation of mesh sizes

Formulating the optimisation problem (3D)

Following rotation to coordinate axis, edge 

lengths still satisfy: 
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Two-dimensional 

mesh optimisation

E.g. An example of the effect of 

an edge swap on the element 

quality functional for a pair of 

elements in 2D. 

NB. The 2D functional is optimal 

for a value of unity here

For 2D applications we use the 

Ani2D-MBA library 

http://sourceforge.net/projects/ani2d/ 

e.g. Vasilevski and Lipnikov, 1999



‘target’ mesh

‘super mesh’ and mapping 

from donor mesh

‘donor’ mesh

Conservative Interpolation: crucial for many 

applications, with adaptivity, model coupling

2D + bdd correction: Farrell et al., 2009;  3D: Farrell, Maddison, 2009

• Start from fact that Galerkin projection is conservative, 

second-order accurate, non-dissipative and well-defined 

for DG fields

• Galerkin projection leads to the linear system:

• Compute the ‘mixed’ mass matrix using numerical 

integration of the T&D shape function evaluated on a 

‘supermesh’ of simplices constructed from the 

intersection of T&D

• Galerkin projection can result in under/overshoots, if 

boundedness important ‘diffuse’ these using the 

diffusive (but still conservative) properties of the lumped 

mass matrix:



A synthetic example – interpolating a top hat back and forth 

between 100 arbitrary meshes (not refined to represent the top hat in 

any way – artificially difficult problem) 

‘Consistent’ FE interpolation Galerkin projection



2D example with buoyancy: lock exchange problem
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Free- & no-slip head speeds



Consider the impact of two enhancements to standard adaptivity

Metric advection – advect components of 

the metric forward in time and superimpose

Extra boundary refinement –

spatially dependent error



Impact on head speed 

(Hiester et al., 2011)

With boundary refinement we get a result as good as a uniform mesh with over an order of 

magnitude more resolution



Impact on mixing/entrainment (the ability to keep spurious diapycnal 

mixing levels low one of the primary concerns for large scale models)

5,000,000 nodes

1,000,000 nodes

75,000 nodes

Comments:

• Perception that adaptivity itself can be dissipative

• This case shows that this can certainly be true if adaptivity not appropriate – advecting a front 

out of a region of high resolution

• Not really adaptivity’s fault, just need appropriate error metrics/measures - difficult topic



Time step:

Nonlinear iteration:

– Solve scalar equations – e.g. T, S, e, k-ε, biology, sediment, material/phase vol. fracs

– Evaluate density via an EoS

– Solve the coupled momentum/pressure system

Repeat a fixed number of nonlinear iterations or until convergence

Diagnostics/output if appropriate

Adapt the mesh if appropriate (simulated time, # time steps, mesh quality measure):

– Metric calculation

– Mesh optimisation

– Mesh-to-mesh interpolation

– Load balance

Next time step

Typical solver time loop



Discretisation options CG

DG

CV

Spatial discretisation

• CG (continuous Galerkin)

– Streamline upwind (Petrov-Galerkin) stabilisation

• DG (discontinuous Galerkin)

– Upwind advective flux

– CDG diffusive flux

– Slope limiters (vertex based – Kuzmin 2010)

– Explicit sub-cycling of advection

• CV (control volume)

– Flux limit between upwind flux and high-order flux obtained 

from FE interpolation, Sweby limiter, options for ‘sharpening’ 

interface limiters for multi-material simulations

– Use of finite element solution space for diffusive flux calculation 

Temporal discretisation

• Simple theta-method - forward/backward Euler, Crank-Nicolson

• Possibly with explicit sub-cycling



• Solve a linearised system, using the best available guess for pressure, for a new guess at 

velocity

• Consider the equation that the velocity will satisfy following a pressure correction step

• Subtract and multiply through by                , solve for         and then update      and  

• The other terms come from the precise form continuity we’d like the new velocity to satisfy 

– Boundary conditions applied via continuity:  normal velocities, free surface, inundation

– ‘Balanced pressure’ decomposition 

– Compressible continuity equation

Coupled momentum/pressure



Discretisation – velocity/pressure

• The big remaining choice is how to represent velocity and 

pressure – so-called element choice, cf. finite difference grid 

staggering

• A whole zoo of options with different properties and 

appropriateness to represent certain physical regimes (we 

use P1P1, P2P1, P0P1, P0P1cv, P1dgP2, ...)

• Loosely, LBB stability (presence of pressure (checkerboard) 

modes) implies one should use a larger space to represent 

velocity than pressure

• But accurate representation of balance requires the opposite

• We tackle this with two approaches –

– separating out a more accurate ‘balance’ pressure from 

the ‘div-free’ pressure

– Using a mixed combination of CG and DG spaces,            

e.g. (u,p) ϵ (P1dg,P2)

• LBB stable

• Balance

• No mass lumping 

• Good wave dispersion 

properties
Cotter et al., 2009



Anisotropy and boundary 

currents (WBC: Stommel 1948)

Uniform 

mesh

Approx. two orders of 

magnitude improvement 

in the error/cost 

relationship between 

uniform and anisotropic

adaptive refinement, only 

one order for isotropic
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Advecting a tracer field through the boundary layer

Initial Gaussian tracer 

field advected with the 

velocity field from the 

Stommel gyre –

stretching through the 

boundary layer makes 

this a tough problem for 

the advection method.

40k max

10k

Number of nodes against time 

shown right with 5 different 

tracer error weights.
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Comparisons between uniform fixed and adaptive simulations 

10k

40k

160k

Maximum tracer concentration 

against time – should remain 

constant at 10.

L2 norm of error compared to 

an exact solution obtained by 

integrating back particle paths, 

against time.
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Conclusion: comparable 

quality for an order of 

magnitude fewer nodes



Barotropic wind driven gyre: western boundary current and eddies resolved 

with highly anisotropic resolution



Now consider 3D with buoyancy and rotation: surface forced convection

Lagrangian tracers/detectors



But that was not a particularly high aspect ratio

What if we want to study the whole event’s life-

cycle, including (a) preconditioning by basin scale 

flow and (c) restratification over a much larger 

area such as the Labrador Sea?

2km

Marshall and Schott, 1999:

Open ocean deep convection: observations, models 

and theory, Rev of Geophysics, 37, 1, 1-64



High aspect ratio restratification – a smooth problem so 

should be relatively easy to deal with numerically!

Set up taken from: H. Avlesen et al. A convergence study of two ocean models applied to a density 

driven flow. Int. J. Num. Meth. Fluids, 36(6): 639-657, 2001.

1000:1 aspect ratio



Initial balanced flow (fix temperature and evolve u and p to steady state) 

Layered in verticalFully unstructured in 3D Columns, non-layered

20 elements 

in vertical

40 elements 

in vertical

Spurious noise, all element pairs



Spin-down 

experiment 

with new 

dynamic 2+1D 

adaptivity



What’s the problem?

• Consider the vertical momentum equation in a non-hydrostatic model:

• Assuming a linear p, the truncation error in the horizontal part of the pressure leads to an error 

in the vertical pressure gradient of approximately:

• As the aspect ratio (L/H) becomes large, to keep this truncation error small compared to W, this 

indicates a constraint on the horizontal mesh spacing

• Currently working to understand this constraint for idealised problems

• For  meshes with nodes appearing in columns vertically this truncation error is not present

hydrostatic balance



A more challenging restratification problem (fixed mesh)

Set up taken from: Rousset et al. A multi-model study of the restratification phase in an 

idealized convection basin. Ocean Modelling, 26(3-4): 115-133, 2009.

Real aspect ratio 500:1



Use of an adaptive mesh appears to be getting the timings 

of the restratification slightly closer to the reference solution

Fixed mesh Adaptive mesh

Rousset et al. 2009



Compare results from fixed and adaptive runs



The surface T field and the 2D adapted 

surface mesh



The vertical mesh  (a slice through an unstructured mesh 

always looks a little unpleasant!)

Adapt surface in 2D 

(using a metric 

‘collapsed’ from 3D) 

and then in 1D down 

each column of nodes



The surface velocity field (NB. metric used here based only on T (0.005 weight))



DG d.o.f. counts for the adaptive restratification problem

• The resolution of the 3D mesh peaks a little earlier that the surface 2D mesh

• Indicating that more refinement is occurring in the vertical earlier in the simulation

Timings

• Fixed: np 64, 136 hours, dt=7200, dx= 2.5km, 15 layers (10@50m 5@100m) 16.2M vel d.o.f.s

• Adaptive: np 8, 231 hours, dt=3600, max/min dx,dz = 2km/20km, 20m/200m, max 6M vel dofs

• 64*136 = 8704;   8*231*0.5 = 924   -- very rough indication of factor 10 reduction in CPU costs
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More on the balance problem

Full pressure
With buoyancy 

‘removed’

With buoyancy and 

rotation ‘removed’

Standard CFD FE pairs (e.g. P1P1, P2P1) perform poorly when trying to represent large scale 

balanced states, i.e. when the horizontal and vertical pressure gradient closely balances 

Coriolis and buoyancy terms

Balanced pressure solver solution: Helmholtz decomposition of Coriolis + buoyancy terms, 

solve for the dominant balancing pressure (take the divergence and solve elliptic problem)

is then included as one of the ‘other terms’ in the pressure projection and has 

the effect of cancelling out the dynamically unimportant part of the Coriolis and buoyancy terms. 

Free to use a higher-order representation of the balanced pressure  without violating LBB.  
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Stratified flow past a Gaussian seamount

Stabilised P1P1 with no balanced solver

Any noise will have disastrous results on 

mesh adaptivity – bad result at high cost!

Using the hydrostatic & geostrophic 

balanced pressure solver, note that 

the mesh is now not refining to 

capture noise in the dynamics
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Validation against Laboratory 

experiments
The 3D differentially heated rotating annulus 

at two rotation rates. The bounds of the 

normalised temperature have been limited 

to aid visualisation at the end of the movie

R. Hide and P.J. Mason 1975: Sloping convection 

in a rotating fluid. Adv. Phys. 24, 47-100 
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Two snapshots in time at 

the faster rotation rate

Here the maximum computational cost 

corresponds to the time of maximum 

kinetic energy

Recent quantitative comparisons with 

heat transport data from lab runs shows 

that it is hard to beat an optimised fixed 

mesh at lower rotation rates, but 

adaptivity is  needed for higher rotation 

rates (Maddison, 2010)



Stretched structured mesh used by the finite difference MORALS code –

shown to reproduce experiments well with this telescoping into boundary 

layers

Rotating annulus: quantitative test problem set-up

The above mesh spacing is used to derive a metric which 

a fully unstructured tet mesh is generated



Comparisons with data: thermocouple at mid-height mid-radius 

and system heat transport Maddison et al., 2011, doi:10.1016/j.ocemod.2011.04.009

The standard 

discretisation gets 

the answer 

completely wrong!

With balanced 

pressure solver 

things much better

P1 similar to P2

Lab data



A free surface method suitable for fully unstructured 

non-hydrostatic models (implicit, mass conservative)

• The kinematic free surface boundary condition can be written (in arbitrary coordinate frame) as

• Assuming the Boussinesq approximation, and that we have subtracted out the ‘hydrostatic 

mode’ associated with       then on the free surface we have 

• Now the weak form of continuity looks like

• Upon discretisation in space and time the final term becomes one of the ‘other terms’ 

mentioned in the pressure projection method

• Solution gives us a pressure for which the value at the free surface is related to    , we can 

choose to move the mesh based on this, but need to re-compute mass matrices etc



Small scale test problem – Beji-Battjes, comparison to lab 

experiments, Kramer et al., 2011



Tsunami (2004 off Kii peninsula) simulation
Study conducted by Dr Yusuke Oishi (Fujitsu Laboratories of Europe)

Observations

Numerical



Simple extension to deal 

with inundation

• Change the boundary condition applied via continuity if the water column depth falls below 

some small tolerance      :

• Discretise this in space and time and this leads to an alternate form of the ‘other terms’ 

added previously to incorporate a free surface pressure boundary condition in the pressure 

projection

• Apply depth dependent bottom drag to ‘kill off’ motion in the remaining thin layer

• Retains the implicit, mass-conservative, and ability to work with arbitrary mesh properties

• See Funke et al., submitted, 2011 for further details and validation



Hokkaido-Nansei-Oki tsunami (1993); benchmark lab data for 

inundation at Monai Valley, Okushiri Island, Japan
http://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_MonaiValley/index.html;   Funke et al., 2011
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Landslide generated waves 

simulated with a multi-material 

approach (Wilson et al., 2010)



Compressible Navier-Stokes: warm rising bubble example 
(Nelson et al., 2011)



A multi-phase simulation of tephra settling in the ocean (Jacobs et al.)



Summary

• Demonstrated CFD and GFD simulations using adaptive anisotropic unstructured 

meshes

• Robustness and flexibility over mesh, discretisation methods, equation sets and code is 

key – multi-disciplinary progress, skills/ideas exchange, funding!

• Robustness of the underlying numerical method is obviously always key, but feedbacks 

with the ability of the model to resolve spurious grid scale noise an ‘interesting’ property

• The principal hurdle now is probably computational cost

• Of course in addition to testing the inclusion of more real-world configurations, 

processes, forcings etc

• Active research areas not discussed: multi-physics (coupling/OASIS4, sea ice, ice 

shelves, biology, sediment, solids), adjoints (DWR errors), reduced order models, hybrid 

massively parallel optimisation, GPUs, code generation, geodynamics (Stokes), air 

pollution, tidal power, wave breaking defences, ...



Finally

• If you would like the code:  http://launchpad.net/fluidity     (Open Source – LGPL license)

• 4 month (22Aug-21Dec 2012) Isaac Newton Institute Programme on Multiscale Numerics

for the Atmosphere & Ocean (http://www.newton.ac.uk/programmes/AMM/)

• If you would like an invitation let me know (m.d.piggott@imperial.ac.uk)


