

Stochastic subgrid-scale estimation and scale-separating schemes for Large-Eddy Simulation

<u>Nikolaus A. Adams</u>, S. Hickel, X.Y. Hu & the LES modeling group at AER/TUM Technische Universität München

Chapters:

- 1. LES modeling based on subgrid-scale estimation
- 2. Implicit SGS modeling by scale separation
- 3. Stochastic subgrid-scale estimation

Numerical motivation of Large-Eddy Simulation:

Representation of flow evolution with reduced spatial dimensionality and bound on kinetic energy

Consider as example the 3D Taylor-Green vortex

- LES of 8 vortices in a triply periodic box with 64³ cells
- visualization of time evolution at Re=400 (second-invariant criterion)

- evolution of scales transition to isotropic turbulence for Re=3000
- subgrid-scale model with proper SGS energy transfer

Lehrstuhl für Aerodynami und Strömungsmechanik

Consider a generic conservation law governing the turbulent-flow evolution:

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}F(u) = 0$$

Assume that an "exakt" solution (DNS) \mathcal{U} is obtained on the white grid.

The objective of LES is to compute an accurate solution on the coarser grid (red), the filtered solution:

$$u_N = G_N * u$$

Lehrstuhl für Aerodynamik und Strömungsmechanik

Evolution equation for the filtered solution:

$$\begin{aligned} \mathbf{G}_{N} * \left(\frac{\partial}{\partial t} u + \frac{\partial}{\partial x} F(u) \right) &= \frac{\partial}{\partial t} u_{N} + \frac{\partial}{\partial x} \mathbf{F}_{N}(u) = 0 \\ \Rightarrow \frac{\partial}{\partial t} u_{N} + \frac{\partial}{\partial x} \mathbf{F}_{N}(u_{N}) &= \mathbf{\mathcal{G}}_{SGS} \end{aligned}$$

The SGS resdiual is not closed (involves unavailable information), requires modeling:

$$\mathcal{G}_{SGS} = \frac{\partial}{\partial x} F_N(\boldsymbol{u}_N) - \frac{\partial}{\partial x} F_N(\boldsymbol{u})$$

Let now $\boldsymbol{u}_N = \boldsymbol{G}_N * \boldsymbol{u}$ be the cell averaged solution of the Finite-Volume-semi-discretized conservation law:

$$\frac{\partial}{\partial t}\boldsymbol{u}_{N} + \frac{\delta}{\delta x}\tilde{F}_{N}\left(\tilde{\boldsymbol{u}}_{N}\right) = 0 \text{ where } \tilde{\boldsymbol{u}}_{N} \approx u$$

The Modified Differential Equation for \mathcal{U}_N is then

$$\frac{\partial}{\partial t}\boldsymbol{u}_{N} + \frac{\partial}{\partial x}F_{N}\left(\boldsymbol{u}_{N}\right) = \boldsymbol{\mathcal{G}}_{num}$$

where

$$\mathcal{G}_{num} = \frac{\partial}{\partial x} F_N(\boldsymbol{u}_N) - \frac{\delta}{\delta x} \tilde{F}_N(\tilde{\boldsymbol{u}}_N)$$

is the (spatial) truncation error.

Analogy between the **Finite-Volume discretization** of the conservation law and the **LES evolution equation** :

Interference of truncation error and SGS residual:

If we discretize the **LES equations** we have as modified equation:

 $\frac{\partial}{\partial t}u_{N} + \frac{\partial}{\partial x}F_{N}\left(u_{N}\right) = \mathcal{G}_{SGS} + \mathcal{G}_{num}$

If we are interested in a discrete solution where the grid size is not much smaller than characteristic flow scales G_{num} is not small.

In LES truncation error and SGS model interfere.

Two fundamentally different paradigms to numerical LES:

1. Implicit LES:

Synopsis: Numerical discretization and SGS model are connected $Constraint: \mathcal{G}_{num}$ \approx \mathcal{G}_{SGS} so that truncation error acts asphysically consistent SGS model \mathcal{G}_{SGS} \mathcal{G}_{SGS} \mathcal{G}_{SGS}

In practice:

- o Physical consistency often "overlooked"
- Incorporation of physical consistency requires nonlinear discretization scheme
- o Numerically "robust"

Lehrstuhl für Aerodynamik und Strömungsmechanik

2. Explicit LES:

Synopsis: Numerical discretization and SGS model are independent **Constraint:** $\|\mathcal{G}_{num}\| \ll \|\mathcal{G}_{SGS}\|$ so that the SGS has effect **In practice:**

- o Constraint rarely satisfied
- Explicit filter necessary for scale separation
- High-resolution discretization schemes necessary for small error throughout represented scales

Lehrstuhl für Aerodynamik und Strömungsmechanik

Soft deconvolution: **approximate reconstruction** of non-resolved represented scales: $u_N \rightarrow \tilde{u}_N$

- recovers part of the SGS energy transfer
- improves prediction of anisotropy
- maintains tensorial structure of the exact SGS residual
- requires additional regularization for modeling the full SGS energy transfer

Approaches to Implicit LES can be classified (not comprehensive):

- 1. Linear (i.e. CFL-number dependent) numerical dissipation:
 - Multidirectional upwinding by Kawamura & Kuwahara 1984
- 2. Limiter-based nonlinear dissipation:
 - Flux-Corrected Transport by Boris & Grinstein 1992
 - Piecewise-Parabolic Method by Porter & Woodward 1998
- 3. Nonlinear advection:
 - MPDATA scheme by Margolin and Smolarkiewicz 1998
- 4. Spectral regularization:
 - Spectral Vanishing Viscosity by Tadmor 1990
- 5. Nonlinear reconstruction:
 - Approximate local deconvolution model by Hickel and Adams 2004,2006

2. Implicit SGS modeling by scale separation

How to impose criteria for physical consistency ?

- Direct manipulation of the truncation error, design of nonlinear scheme:
 - Adaptive local deconvolution model, WENO-type reconstruction (deconvolution), local Lax-Friedrichs-type numerical flux function for regularization, parameter adjusted for physical consistency
 - Not subject of today's presentation

Several papers in J. Comput. Phys. 2004, 2006, 2010, Phys. Fluids 2007, Int. J. Heat Fluid Flow 2010, several submitted

- Indirect manipulation of the truncation error
 - A scheme that is physically consistent for turbulent subgrid-scales may be suboptimal for non-turbulent (genuine) subgrid scales

- Begin with good shock capturing scheme
- Consider 1D transport equation and Finite-Volume discretization

2. Implicit SGS modeling by scale separation

WENO reconstruction $\tilde{u}_{j+1/2} \approx \left(G_N^{-1} * u\right)\Big|_{x}$

TECHNISCHE

 interpolation stencil is not unique and different stencils carry different smoothness and scale information

2. Implicit SGS modeling by TECHNISCHE UNIVERSITÄT MÜNCHEN 2. Implicit SGS modeling by Scale separation

WENO5 reconstruction of the deconvolved filtered solution:

• Stencil contributions according to smoothess measures (the smoother the reconstruction polynomial on the stencil the larger the contribution)

$$\omega_k = \frac{\alpha_k}{\sum_{k=0}^2 \alpha_k}, \quad \alpha_k = \frac{d_k}{\left(\beta_k + \epsilon\right)^q}. \qquad \beta_k = \sum_{j=1}^2 \Delta x^{2j-1} \int_{x_{i-1/2}}^{x_{i+1/2}} \left(\frac{d^j}{dx^j} \hat{f}_k(x)\right)^2 dx,$$

- Driven towards full-order (5-th order) upwind scheme when smoothness measure is uniform
- Rather dissipative anyway, "Shu-Osher problem", here with Hybrid ENO5-compactupwind scheme Adams & Shariff, JCP 1996

2. Implicit SGS modeling by TECHNISCHE UNIVERSITAT MÜNCHEN Lehrstuhl für Aerodynamik und Strömungsmechanik

2. Implicit SGS modeling by TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Aerodynamik scale separation

WENO-C6 reconstruction of the deconvolved filtered solution:

Include downwind stencil to and drive towards full-order (6th-order) central scheme when smoothness measure is uniform

$$\omega_k = \frac{\alpha_k}{\sum_{k=0}^3 \alpha_k}, \quad \alpha_k = d_k \left(C + \frac{\tau_6}{\beta_k + \epsilon} \right),$$

 Preserve shock-capturing properties and reduce dissipation away from shock

Hu, Wang, Adams, JCP 2010

 Physically non-consistent for implicit SGS modeling, over-dissipative (inertial range not recovered up to the cutoff wavenumber)

2. Implicit SGS modeling by TECHNISCHE UNIVERSITAT MÜNCHEN 2. Implicit SGS modeling by scale separation

Scale separation WENO:

 Increase bias of central and upwind contributions (emphasize extrema) Hu, Adams, JCP 2011

$$\omega_r = \frac{\alpha_r}{\sum_{r=0}^3 \alpha_r}, \quad \alpha_r = d_r \left(C_q + \frac{\tau^6}{\beta_r^3 + \epsilon \Delta x^2} \right)^q$$

• Shock-capturing properties (essentially) preserved

2. Implicit SGS modeling by Scale separation

Lehrstuhl für Aerodynamik und Strömungsmechanik

Scale separation WENO:

 Physically consistent prediction of low-Mach-number isotropic turbulence: Evolution of 3D-Taylor-Green vortex at infinite Reynolds number

2. Implicit SGS modeling by Scale separation

Lehrstuhl für Aerodynamik und Strömungsmechanik

Scale separation WENO:

• Extension to compressible turbulence (pseudo-sound range)

represented scales: $u_N \rightarrow \tilde{u}_N$

- requires addditional model
- for computational efficiency only possible on limited scale range
- full SGS energy transfer needs to be modeled

Reconsider explicit LES by the approximate deconvolution model

Stolz, Adams, Phys. Fluids 1999

- Linear deconvolution / reconstruction operator
- Requires clear scale separation: resolved non-resolved/represented non-represented
- Requires small numerical truncation error on the range of represented scales

$$\frac{\partial}{\partial t}\overline{u}_{N} + \frac{\partial}{\partial x}F_{N}(\overline{u}_{N}) = \mathcal{G}_{SGS} \qquad \mathcal{G}_{SGS} = \frac{\partial}{\partial x}F_{N}(\overline{u}_{N}) - \frac{\partial}{\partial x}\overline{F_{N}(\overline{u}_{N})}$$

• Reconstruction of an approximation of the filtered field by a (linear) regularized approximate inverse of the filter $\tilde{u}_N = Q * \overline{u}_N$ operator

• Van Cittert regularization

TECHNISCHE

$$Q = G^{-1} = [I - (I - G)]^{-1} = \sum_{\nu=0}^{\infty} (I - G)^{\nu} \approx \sum_{\nu=0}^{M} (I - G)^{\nu}$$

• Transfer functions for M=5

• ADM Regularization

ALL IL

TECHNISCHE

- Stolz, Adams, Phys. Fluids 1999 mentioned
- Stolz, Adams, Kleiser, Phys. Fluids 2001 done
- Successfully applied as "stand-alone" model by Kleiser et al. since

$$\frac{\partial \tau_{ij}^{(2)}}{\partial x_j} = -\chi \left(I - Q * G \right) * \overline{u}_i^N$$

- What is special about ADM Regularization Quote Alan Wray (NASA Ames) about 1998: *"Oh yes, this is just a Langevin term"* (I did not pay sufficient attention to this at that time)
- Analogy between filtering and kernel estimation
 Average using PDF: Estimator function from particles:

$$\bar{u}_i = \int_{-\infty}^{\infty} f_{u_i}(v_i) v_i dv_i. \qquad \longrightarrow \qquad \bar{u}_i(\mathbf{x}) = \frac{\sum_{\alpha} G(\mathbf{x} - \mathbf{x}_{\alpha}) u_i(\mathbf{x}_{\alpha})}{\sum_{\beta} G(\mathbf{x} - \mathbf{x}_{\beta})}. \qquad -$$

Filter as kernel estimator:

$$ar{u}_i(\mathbf{x}) = \int_{-\infty}^{\infty} G(\mathbf{x} - \mathbf{x}'; h) u_i(\mathbf{x}') d\mathbf{x}',$$

- Analogy between ADM-relaxation and Pope's Generalized Langevin Model (deterministic version):
 - GLM-deterministic, Lagrangian

$$dw_i^{\alpha} = -\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial x^{\alpha}} dt + \frac{\partial \bar{\sigma}^{\alpha\beta}}{\partial x^{\beta}} dt - \chi^{\alpha\beta} (w_i^{\beta} - \bar{w}_i^{\beta}) dt.$$

GLM-deterministic, Eulerian

$$\frac{\partial w^{\alpha}}{\partial t} + w^{\beta} \frac{\partial w^{\alpha}}{\partial x^{\beta}} = -\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial x^{\alpha}} + \frac{\partial \bar{\sigma}^{\alpha\beta}}{\partial x^{\beta}} - \chi^{\alpha\beta} (w^{\beta} - \bar{w}^{\beta}).$$

Deterministic flow map

ADM-relaxation

$$\frac{\partial \bar{u}^{\alpha}}{\partial t} + \overline{u^{*\beta}} \frac{\partial u^{*\alpha}}{\partial x^{\beta}} = -\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial x^{\alpha}} + \frac{\partial \bar{\sigma}^{\alpha\beta}}{\partial x^{\beta}} - \chi(\bar{u}^{\alpha} - \overline{u^{*\alpha}}),$$

What about the full GLM?

TECHNISCHE

$$dw_i^{\alpha} = -\bar{F}_i^{\alpha}dt - F_{P_i}^{\alpha}dt - \chi^{\alpha\beta}(w_i^{\beta} - \bar{w}_i^{\beta})dt + \sqrt{\gamma}\xi_i^{\alpha}dt,$$

Stochastic force \Rightarrow no flow map

Eulerian representation of Lagrangian-particle distribution by • stochastic number-density field

Soulard, Sabelnikov, Combust., Explos. Shock Waves, 2006

$$\frac{\partial n}{\partial t} = -\frac{\partial}{\partial x^{\alpha}} \sum_{i} \delta(\mathbf{x} - \mathbf{x}_{i}) w_{i}^{\alpha}, \quad \begin{array}{c} \text{Delta-function} \\ \text{calculus} \end{array} \quad \frac{\partial n}{\partial t} + \frac{\partial m^{\alpha}}{\partial x^{\alpha}} = 0, \end{array}$$

Nakamura, Yoshimori, J. Phys. A, 2009

• More delta-function calculus \Rightarrow Eulerian GLM

Adams, Phys. Fluids, 2011

$$\frac{\partial m^{\alpha}}{\partial t} + \frac{\partial}{\partial x^{\beta}} \frac{m^{\alpha} m^{\beta}}{n} = -\bar{F}^{\alpha}(\mathbf{x}, t)n(\mathbf{x}, t) - \frac{\partial p_{s}}{\partial x^{\alpha}} - \chi^{\alpha\beta} \left(m^{\beta}(\mathbf{x}, t) - \bar{w}^{\beta}(\mathbf{x}, t)n(\mathbf{x}, t) \right) + \sqrt{\gamma}n(\mathbf{x}, t)\zeta^{\alpha}(\mathbf{x}, t),$$

 Stochastic extension of ADM
 Adams, Phys. Fluids, 2011

$$\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \overline{\rho u^{\alpha}}}{\partial x^{\alpha}} = 0, \qquad (21a)$$

$$\frac{\partial \overline{\rho u^{\alpha}}}{\partial t} + \frac{\partial}{\partial x^{\beta}} \frac{\overline{(\rho u^{\alpha})^{*} (\rho u^{\beta})^{*}}}{\overline{\rho}} = -\frac{\partial \overline{p^{*}}}{\partial x^{\alpha}} - \frac{\partial \overline{\sigma^{*\alpha\beta}}}{\partial x^{\beta}}, \quad (21b)$$

$$\frac{\partial \bar{E}}{\partial t} + \frac{\partial}{\partial x^{\beta}} \overline{(E^* + p^*)} \frac{(\rho u^{\alpha})^*}{\bar{\rho}} = \frac{\partial}{\partial x^{\beta}} \overline{\sigma^{*\alpha\beta}} \frac{(\rho u^{\alpha})^*}{\bar{\rho}} + \frac{\partial}{\partial x^{\beta}} \overline{q^{*\beta}}.$$
(21c)

The trick

30

Stochastic extension of ADM (continued)

• SADM in operation (3D TGV)

Some bold statements at the end

- Physically consistent implicit LES is probably the final development of numerical LES and will be the main tool for future practical applications
- A large grey zone will develop / develops with marginally physically consistent implicit LES approaches
- Meso-scale modeling and simulation with theoretically rather well established stochastic meso-scale (subgrid-scale) models is an emerging field for many fluid-mechanics applications