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1.  LES modeling based on 
subgrid-scale estimation 

Numerical motivation of Large-Eddy Simulation: 

Representation of flow evolution with reduced spatial 
dimensionality and bound on kinetic energy  

 

 

 

Consider as example the  3D Taylor-Green vortex 
 LES of 8 vortices in a triply periodic box with 643 cells 
 visualization of time evolution at Re=400 (second-invariant criterion) 

t = 0 t = 5 t = 10 
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 evolution of scales – transition to isotropic turbulence for Re=3000 

 subgrid-scale model with proper SGS energy transfer  
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1.  LES modeling based on 
subgrid-scale estimation 



Assume that an “exakt” solution 
(DNS)       is obtained on the white 
grid. 

Consider a generic conservation 
law governing the turbulent-flow 
evolution: 
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The objective of LES is to compute 
an accurate solution on the coarser 
grid (red), the filtered solution: 
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1.  LES modeling based on 
subgrid-scale estimation 



Evolution equation for the filtered solution: 
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The SGS resdiual is not closed (involves unavailable information), 
requires modeling:  

1.  LES modeling based on 
subgrid-scale estimation 



Let now                                  be the cell averaged solution of the Finite-
Volume-semi-discretized conservation law: 
 
                                                     where    
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The Modified Differential Equation for        is then 
 
 
 
where  
 
 
 
is the (spatial) truncation error.  
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Analogy between the Finite-Volume discretization of the 
conservation law and the LES evolution equation :  
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truncation error 
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discrete solution 
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Discretized conservation law (FV) 
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Filtered conservation law (LES) 

filtered grid function 
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SGS residual 

1.  LES modeling based on 
subgrid-scale estimation 



If we are interested in a discrete 
solution where the grid size is not 
much smaller than characteristic 
flow scales           is not small. 
 
 

If we discretize the LES equations 
we have as modified equation: 
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Interference of truncation error and SGS residual: 

In LES truncation error and SGS 
model interfere. 

1.  LES modeling based on 
subgrid-scale estimation 



1. Implicit LES: 

Synopsis: Numerical discretization and SGS model are connected 

Constraint:                                             so that truncation error acts as 

physically consistent SGS model 

In practice:  

o Physical consistency often “overlooked” 

o Incorporation of physical consistency requires nonlinear 

discretization scheme 

o Numerically “robust“ 

 

Two fundamentally different paradigms to numerical LES: 
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1.  LES modeling based on 
subgrid-scale estimation 

physical consistency

num SGS≈G G



2. Explicit LES: 

Synopsis: Numerical discretization and SGS model are independent 

Constraint:                                   so that the SGS has effect 

In practice:  

o Constraint rarely satisfied 

o Explicit filter necessary for scale separation 

o High-resolution discretization schemes necessary for small error 

throughout represented scales  
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1.  LES modeling based on 
subgrid-scale estimation 

num SGSG G



Soft deconvolution: approximate reconstruction of non-resolved 
represented scales:  
 recovers part of the SGS energy transfer  

 improves prediction of anisotropy  

 maintains tensorial structure of the exact SGS residual 

 requires additional regularization for modeling the full SGS energy 
transfer  
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1.  LES modeling based on 
subgrid-scale estimation 

resolved scales 

represented scales 



1. Linear (i.e. CFL-number dependent) numerical dissipation: 
• Multidirectional upwinding by Kawamura & Kuwahara 1984 

2. Limiter-based nonlinear dissipation: 
• Flux-Corrected Transport  by Boris & Grinstein 1992 
• Piecewise-Parabolic Method by Porter & Woodward 1998  

3. Nonlinear advection: 
• MPDATA scheme by Margolin and Smolarkiewicz 1998 

  
4. Spectral regularization: 

• Spectral  Vanishing Viscosity by Tadmor 1990 
 

Approaches to Implicit LES can be classified (not comprehensive): 
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5. Nonlinear reconstruction: 

• Approximate local deconvolution model by  
Hickel and Adams 2004,2006 

 

2.  Implicit SGS modeling by 
scale separation  



How to impose criteria for physical consistency ? 
 
 Direct manipulation of the truncation error, design of nonlinear scheme: 

o Adaptive local deconvolution model, WENO-type reconstruction 
(deconvolution), local Lax-Friedrichs-type numerical flux function for 
regularization, parameter adjusted for physical consistency 

o Not subject of today‘s presentation  
 
 

 Indirect manipulation of the truncation error  
o A scheme that is physically consistent for turbulent subgrid-scales 

may be suboptimal for non-turbulent (genuine) subgrid scales  
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2.  Implicit SGS modeling by 
scale separation  

Several papers in J. Comput. Phys. 2004, 2006, 2010, Phys. Fluids 2007, Int. J. Heat Fluid 
Flow 2010, several submitted 



• Begin with good shock capturing scheme 

• Consider 1D transport equation and Finite-Volume discretization 
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2.  Implicit SGS modeling by 
scale separation  



3. ILES modeling by adaptive local deconvolution 
 

WENO reconstruction  

• interpolation stencil is not unique and different stencils carry different 
smoothness and scale information 

( )1/2 1/2j ju u x+ +≈

resulting full 4-
degree stencil  

admissible  
2-degree  
upwind stencils 
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2.  Implicit SGS modeling by 
scale separation  
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2.  Implicit SGS modeling by 
scale separation  

WENO5 reconstruction of the deconvolved filtered solution:  

• Stencil contributions according to smoothess measures (the smoother 
the reconstruction polynomial on the stencil the larger the contribution) 

 

 

• Driven towards full-order (5-th order) upwind scheme when 
smoothness measure is uniform 

• Rather dissipative anyway, 
“Shu-Osher problem”, here 
with Hybrid ENO5-compact- 
upwind scheme  

 

 

Adams & Shariff, JCP 1996 
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3. ILES modeling by adaptive local deconvolution 
 

( )1/2 1/2j ju u x+ +≈

resulting full 4-
degree stencil  

admissible  
2-degree  
upwind stencils 
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additional 2-degree 
downwind stencil 

resulting 5- 
degree stencil  

2.  Implicit SGS modeling by 
scale separation  

wind 



2.  Implicit SGS modeling by 
scale separation  

WENO-C6 reconstruction of the deconvolved filtered solution:  

• Include downwind stencil to and drive towards full-order (6th-order) 
central scheme when smoothness measure is uniform 

 

 

• Preserve shock-capturing  
properties and reduce  
dissipation away from shock 

 

• Physically non-consistent 
for implicit SGS modeling,  
over-dissipative (inertial 
range not recovered up to  
the cutoff wavenumber) 

 

Hu, Wang, Adams, JCP 2010 
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2.  Implicit SGS modeling by 
scale separation  

Scale separation WENO:  

• Increase bias of central and upwind contributions (emphasize extrema) 

 

 

 

• Shock-capturing properties (essentially) preserved 

 

Hu, Adams, JCP 2011 
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2.  Implicit SGS modeling by 
scale separation  

Scale separation WENO:  

• Physically consistent prediction of low-Mach-number isotropic 
turbulence: Evolution of  3D-Taylor-Green vortex at infinite Reynolds 
number  
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2.  Implicit SGS modeling by 
scale separation  

Scale separation WENO:  

• Extension to compressible turbulence (pseudo-sound range) 
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Hard deconvolution: direct reconstruction / estimation of non-resolved 
represented scales:  
• requires addditional model 

• for computational efficiency only possible on limited scale range  

• full SGS energy transfer needs to be modeled 

N Nu u→ 
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3.  Stochastic subgrid-scale   
estimation 
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3.  Stochastic subgrid-scale   
estimation 

Reconsider explicit LES by the approximate deconvolution model 
 
• Linear deconvolution / reconstruction operator 
• Requires clear scale separation: resolved – non-resolved/represented – 

non-represented   
• Requires small numerical truncation error on the range of represented 

scales 
 
 
 

• Reconstruction of an approximation of the filtered field by  
a (linear) regularized approximate inverse of the filter  
operator 

Stolz, Adams, Phys. Fluids 1999 
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• Van Cittert regularization 
 
 
 

• Transfer functions for M=5 
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3.  Stochastic subgrid-scale   
estimation 
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• ADM Regularization 

3.  Stochastic subgrid-scale   
estimation 
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u

What to do about this range ? 

• Stolz, Adams, Phys. Fluids 1999 – mentioned 
• Stolz, Adams, Kleiser,  Phys. Fluids 2001 – done 
• Successfully applied as “stand-alone” model by 

Kleiser et al. since 26 

Nu resolved scales 



3.  Stochastic subgrid-scale   
estimation 

• What is special about ADM Regularization 
Quote Alan Wray (NASA Ames) about 1998:  

“Oh yes, this is just a Langevin term” 
(I did not pay sufficient attention to this at that time) 

• Analogy between filtering and kernel estimation 
Average using PDF: Estimator function from particles: 

Filter as kernel estimator: 
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3.  Stochastic subgrid-scale   
estimation 

• Analogy between ADM-relaxation and Pope’s Generalized 
Langevin Model (deterministic version):  

GLM-deterministic, Lagrangian 

GLM-deterministic, Eulerian 

ADM-relaxation 

Deterministic 
flow map 
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3.  Stochastic subgrid-scale   
estimation 

• What about the full GLM ? 
 
 
 
 
 
 

• Eulerian representation of Lagrangian-particle distribution by 
stochastic number-density field  

Stochastic force ⇒  
no flow map  

Soulard, Sabelnikov, Combust., Explos. Shock Waves, 2006 

Delta-function 
calculus 

Nakamura, Yoshimori, J. Phys. A, 2009 
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3.  Stochastic subgrid-scale   
estimation 

• More delta-function calculus ⇒ Eulerian GLM  
 
 
 
 
 
 
 

• Stochastic extension  
of ADM 

The trick 
Adams, Phys. Fluids,  2011 

Adams, Phys. Fluids,  2011 
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3.  Stochastic subgrid-scale   
estimation 

• Stochastic extension of ADM (continued) 
 
 
 

 
• SADM in operation (3D TGV) 

Q G∗ Q G∗
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Some bold statements at the end 
 
 Physically consistent implicit LES is probably the final development of 

numerical LES and will be the main tool for future practical  
applications 
 

 A large grey zone will develop / develops with marginally  
physically consistent implicit LES approaches 
 

 Meso-scale modeling and simulation with theoretically rather well 
established stochastic meso-scale (subgrid-scale) models is an 
emerging field for many fluid-mechanics applications 
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