Turbulence Statistics along Gradient Trajectories

Norbert Peters

International MetStröm-Conference 2011

Berlin,

June 7th, 2011

Contents

- Introduction
- Kolmogorov's hypothesis of scale invariance
- Conditional scaling along gradient trajectories
- Dissipation elements
- Experimental results
- The evolution equation for the linear length
- Derivation of the terms in the ε equation
- Summary

Introduction

Turbulence: phenomenologically a fluid regime characterized by chaotic and stochastic property changes.

by Leonardo da Vinci

Various applications

combustors

aircrafts

meteorology

Methods used in turbulence research

- Experiments
 - advantages: real physical phenomena; high Reynolds numbers
 - disadvantages: only limited access to full 3D structures, often straight line measurements
- Direct numerical simulation (DNS)
 - advantages: high spatial resolution, entire velocity and pressure fields
 - disadvantages: artificial effects from boundary conditions, low Reynolds numbers.
- Stochastic theory and scaling

Kolmogorov's (1941) first hypothesis of similarity

For locally isotropic turbulence the n-point distribution functions F_n are uniquely determined by the viscosity v and the dissipation ε

Inertial range: $\nu \rightarrow 0$, ε – scaling !

Two point statistics along a straight line u'(x,t) u'(x+r,t) $x \longrightarrow x+r$

structure function of moment *m*: $B_m = \left\langle \left(u'(\boldsymbol{x} + \boldsymbol{r}, t) - u'(\boldsymbol{x}, t) \right)^m \right\rangle$ Kolmogorov's equation

$$3\frac{\partial B_2}{\partial t} + \frac{1}{r^4}\frac{\partial}{\partial r}(r^4B_3) = -4\varepsilon + \frac{6\nu}{r^4}\frac{\partial}{\partial r}(r^4\frac{\partial B_2}{\partial r})$$

= 0 for steady state
= 0 for v \to 0
exact result:
$$B_3 = -\frac{4}{5}\varepsilon r$$

scale invariance assumption:
$$B_m \propto (\varepsilon r)^{\zeta m}$$

with $\zeta m = \frac{m}{3}$ for all moments

If Kolmogorov's scale invariance *was* exact, the task of computing practical flows would be relatively simple.

The eddy viscosity relating the third to the second structure function would then by

$$\nu_t = \alpha \cdot r \sqrt{B_2(r)}$$

where α is a universal constant (Oberlack & Peters, 1993).

Scale invariance would then provide a general framework for developing closure models.

Unfortunately, scale invariance is *not* exact

Examples:

• Anomalous scaling - scaling exponents ζ_m depart from m/3 for $m \neq 3$

• Derivative skewness and flatness are Reynolds number dependent

K. R. Sreenivasan, R. A. Antonia, Annu. Rev. Fluid Mech., 1997

Why should we care?

We have two-equations models of turbulence to close the Reynolds averaged Navier Stokes equations (RANS),

even better: we have Large Eddy Simulations

But:

The basic argument in favor of modeling unclosed expressions is scale invariance for the unresolved scales

Conditional scaling along gradient trajectories in a scalar field

A scalar field can be that of a passive scalar, the instantaneous kinetic energy or the instantaneous dissipation

Chaotic motion of gradient trajectories in a 2-D scalar field

Cliff-ramp structure in the scalar field

(distribution along a horizontal line)

scaling parameter is the **integral time** τ rather than ε .

Normalized velocity increments along gradient trajectories in the passive scalar field in shear flow turbulence

Linear scaling $\Delta u = c_1 \frac{s}{\tau}$

Normalized velocity increments along gradient trajectories in the kinetic energy field for different flow configurations

Linear scaling: $\Delta u \sim \frac{s}{\tau}$ but with different slopes

flow type		grid	Re _λ
Homogeneous shear turbulence		2048 ³	295
Homogeneous shear turbulence		1024 ³	139
Isotropic homogeneous forced turbulence		1024 ³	126
Kolmogorov flow		1024 ³	188
Isotropic homogeneous decaying turbulence		1024 ³	71
flow type	grid		Re _τ
Channel flow	512 x 512 x 385		590

1

1

Two different scalings

	<i>ɛ</i> -scaling	<i>τ</i> -scaling
velocity increment at large scales	$\delta_r u \propto \left(\varepsilon l\right)^{1/3}$	$\delta_r u \propto l/ au$
velocity decay at small scales	$\delta_r u \propto u/l$	$\delta_r u \propto u/l$
transition at equal $\delta_r u$	$\left(\varepsilon l_c\right)^3 = \nu/l_c$	$l_c/\tau = \nu/l_c$
critical cut-off scale	$l_c = \eta = \left(\frac{\nu^3}{\varepsilon}\right)^{1/4}$	$l_c = \left(\nu\tau\right)^{1/2} = \lambda$
	Kolmogorov scale	Taylor scale

Dissipation elements

Local minimum and maximum points in the mixture fraction fluctuation field are determined by **gradient trajectories** starting from each grid cell in the directions of ascending and descending scalar gradients

Definition:

The ensemble of grid cells from which the same pair of extremal points is reached determines a spatial region defined as "dissipation element".

Interaction of dissipation elements with vortex tubes

Parametric description

Among the many parameters to describe the statistical properties of dissipation elements, we have chosen l and $\Delta \phi'$, which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively.

Extremal points and strain rates for the scalar field in homogeneous shear flow

Clustering of extremal points becomes more evident.

(L. Wang and N. Peters, JFM 554 (2006) 457-475)

Experimental setup in the wind tunnel of the Aerodynamics Institute at the RWTH Aachen (Prof. Schröder)

Tomographic PIV and visualisation of dissipation elements

(L.Schäfer, Physics of Fluids 23 (2011), 035106)

Experimental investigation of the mass fraction field of propane discharging from a round jet into ambient air (I)

*neodymium-doped yttrium lithium fluoride

Experimental investigation of the mass fraction field of propane discharging from a round jet into ambient air (II)

Experimental investigation of the mass fraction field of propane discharging from a round jet into ambient air (III)

Joint pdf of scalar difference at the extremal points and the linear length from DNS calculations

Experimental data using Rayleigh scattering for the joint pdf of element length and scalar difference

The marginal pdf of length for the passive scalar field from DNS

• The normalized shape of the pdf is Reynolds number independent

Experimental and DNS data for marginal pdf's in turbulent channel flow

(L.Schäfer, Physics of Fluids 23 (2011), 035106)

Experimental and DNS data for the scalar field

- Excellent agreement between experimental data and model solution for marginal pdf at x/d=30
- Linear increase at the origin due to diffusion
- Exponential tail modeled by Poisson process
- Very good agreement of maximum position and value

A model for the length pdf

Rapid (jump) processes:

The Poisson processes of random splitting and (re-) attachment.
 This gives an exponential distribution for large elements.

Slow processes

2. Continuous change of length by diffusion and straining of end points.

Diffusive drift to origin enforces the P(l=0)=0.

Evolution equation for the linear length

There are four terms describing the changes of the pdf

- Generation (of small elements) by splitting
- Removal (of all elements) by attachment
- Generation and Removal (of different size elements) by strain
- Removal (of small elements) by diffusional drift

$$\frac{\partial P(l,t)}{\partial t} + \underbrace{\frac{\partial [D/lP(l,t)]}{\partial l}}_{\text{diffusional}} + \underbrace{\frac{\partial [a(l)lP(l,t)]}{\partial l}}_{\text{drift}} = \underbrace{\lambda_s \int_l^\infty y P(y,t) dy}_{\text{splitting}} - \underbrace{\mu_a lP(l,t)}_{\text{attachment}}$$

Parameters D = v and strain $a(l) \sim 1/\tau$ leads to the **Taylor scale**.

Conditional mean strain rate of dissipation elements

Derivation of the e - equation by taking appropriate moments of the evolution equation

For homogeneous shear turbulence

$$\frac{\partial \varepsilon}{\partial t} = c_{\varepsilon 1} \left(\overline{-u'v'} \right) \frac{\varepsilon}{k} \frac{\partial \overline{u}}{\partial y} - c_{\varepsilon 2} \frac{\varepsilon^2}{k}$$

Standard values: $c_{\varepsilon 1} = 1.44$, $c_{\varepsilon 2} = 1.9$

Are the constants (!) $c_{\varepsilon 1}$ and $c_{\varepsilon 2} = 1.9$ Reynolds-number dependent?

Consider decaying turbulence: $k \sim (t - t_0)^{-m}$, $m = \frac{1}{c_{\varepsilon 2 - 1}}$ Experimental data: m = 1.25 $\rightarrow c_{\varepsilon 2} = 1.8$ Final stage, Re $\rightarrow 0$: m = 1.5 - 2.5 $\rightarrow c_{\varepsilon 2} = 1.66 - 1.4$

Scalar fields of kinetic energy k and dissipation $\boldsymbol{\epsilon}$

kinetic energy k

dissipation ϵ

Starting point:

Relation to ε - equation

$$\frac{\partial \varepsilon}{\partial t} = a_{\infty} \varepsilon^* \left(I_s - I_a - I_{\text{strain}} - I_{\text{drift}} \right)$$
production dissipation

Production term:
$$a_{\infty} \varepsilon^* I_{\text{prod}} \sim \varepsilon^* \frac{\partial \bar{u}}{\partial y} \sim c_{\varepsilon 1}(\text{Re}) \left(-\overline{u'v'} \right) \frac{\varepsilon}{k} \frac{\partial \bar{u}}{\partial y}$$

If mean length l_m is proportional to the **Taylor scale**: $l_m^2 \sim \lambda^2 = 10 \nu \frac{k}{\varepsilon}$

Dissipation term:
$$a_{\infty} \varepsilon^* I_{\text{drift}} \sim \varepsilon \nu / l_m^2 \sim c_{\varepsilon 2}(\text{Re}) \frac{\varepsilon^2}{k}$$

Since *n* is Reynolds number dependent, so must be $c_{\varepsilon 1}$ and $c_{\varepsilon 2}$.

	case 1	case 2	case 3	Empirical value
${\sf Re}_\lambda$	98.7	125.0	170.0	_
$c_{arepsilon 1}$	0.425	0.763	1.20	1.44
$c_{arepsilon 2}$	0.457	0.923	1.64	1.90
$c_{\varepsilon 2}$	0.457	0.923	1.64	1.90

Conclusions

- While Kolmogorov's ε-scaling laws tell us how much energy is contained in an element of size l, the pdf of linear length provides the additional information on how many elements of size l are contained in the flow.
- 2. This pdf equation contains diffusive effects with D=v and a τ scaling due to strain and leads to the Taylor scale as mean length scale of dissipation elements.
- 3. Using dissipation elements to reconstruct the ε equation reproduces the form of the equation but shows a Reynolds number dependence of the empirical modeling constants.

Acknowledgements

Much of the work was funded by the DFG Paketantrag

"Geometrische Struktur kleinskaliger Turbulenz"

- N. Peters, Institut for Combustion Technology, RWTH Aachen
- W. Schröder, Institute of Aerodynamics, RWTH Aachen
- M. Oberlack, Chair of Fluid Dynamics, TU Darmstadt

I am grateful for the interaction with my PhD students Jens Henrik Göbbert, Michael Gauding, Markus Gampert and Philip Schäfer who contributed largely to the recent results.

Thank you for your attention

Two point correlation of the scalar gradient

- correlation becomes small for large *l*
- scalar gradient decorrelates from velocity difference

Kolmogorov flow

