Motivation 00000

Method 00000 Setup 000 Results

Summary 00000

Impact of dynamics on cirrus clouds

Peter Spichtinger¹, Fabian Fusina², and Andreas Dörnbrack³

(1) Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany

(2) Institute for Atmosphic and Climate Science, ETH Zurich, Zurich, Switzerland

(3) Institute of Atmospheric Physics, German Aerospace Centre (DLR), Wessling, Germany

June 9, 2011

Setup 000

Summary 00000

Definition/Motivation

Cirrus cloud: Cloud in the upper troposphere/lowermost stratosphere (temperature T < 235 K) consisting purely of ice crystals, which have been formed *in situ*

Why should we care about cirrus clouds?

- Cirrus clouds cover about 20-30% of Earth's surface
- Cirrus clouds are important modulators of the radiative budget of the Atmosphere-Earth system

000

Setup 000 Results 000000000 Summary 00000

Cirrus cloud cover

Radiative impact of cirrus clouds

Cirrus clouds are important modulators of Earth's radiation budget:

A net warming is assumed but not confirmed

Motivation	Method
00000	00000
•	

Setup 000

Open questions

- What is the impact of transient changes in the dynamics on cirrus cloud evolution?
- How to investigate the impact of changes in the large-scale dynamics on processes on smaller scales?

Outline:

- New method for time-dependent ambient states in anelastic equations (in the EULAG model)
- Investigation of orographic waves with changing wind on
 - 1. resolved dynamics
 - 2. cirrus cloud properties

Motivation	Method	Setup	Results
00000	•0000	000	00000000

Derivation of anelastic equations I

Start: Horizontally homogeneous hydrostatic background state of the Boussinesq expansion around a constant stability profile satisfying

$$\partial p_b / \partial z = -g \rho_b \tag{1}$$

and via linearising the pressure gradient we end with the anelastic equations:

$$\nabla \cdot (\rho_b \mathbf{u}) = 0 \tag{2}$$

$$\frac{d\mathbf{u}}{dt} = -\nabla \left(\frac{p - p_b}{\rho_b}\right) + g \frac{\Theta - \Theta_b}{\Theta_b} \mathbf{k} - 2 \,\mathbf{\Omega} \times \mathbf{u} \tag{3}$$

$$\frac{d\Theta}{dt} = 0 \tag{4}$$

with $\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla$.

Summarv

Motivation	Method	Setup
00000	00000	000

Derivation of anelastic equations II

In EULAG we solve the entropy equation in the form

$$\frac{d\Theta'}{dt} = -\mathbf{u} \cdot \nabla\Theta_e \tag{5}$$

for a given environmental state Θ_e , where $\Theta' = \Theta - \Theta_e$ and $\Theta_e(\mathbf{x})$ is a given environmental (or ambient) state suitable for the considered problem.

In a next step, we derive the perturbation form of the equations by subtracting a known environmental (or ambient) state \mathbf{u}_e from the momentum balance.

Motivation	Method	Setup	Results	S
00000	0000	000	00000000	C

Derivation of anelastic equations III

It is assumed that the environmental variables \mathbf{u}_e satisfies the balance equations as follows:

$$\nabla \cdot (\rho_b \mathbf{u}_e) = 0 \tag{6}$$
$$\frac{d_e \mathbf{u}_e}{dt} = -\nabla \left(\frac{p_e - p_b}{\rho_b} \right) + g \frac{\Theta_e - \Theta_b}{\Theta_b} \mathbf{k} - 2 \mathbf{\Omega} \times \mathbf{u}_e, \tag{7}$$

with $\frac{d_e}{dt} = \frac{\partial}{\partial t} + \mathbf{u}_e \cdot \nabla$. Usually, a stable situation is assumed, i.e.

$$0 = -\nabla \left(\frac{p_e - p_b}{\rho_b}\right) + g \frac{\Theta_e - \Theta_b}{\Theta_b} \mathbf{k} - 2 \,\mathbf{\Omega} \times \mathbf{u}_e \qquad (8)$$

Motivation	Method	Setup
00000	00000	000

Results 000000000 Summary 00000

Derivation of anelastic equations IV

We end with the following equations:

$$\frac{d\mathbf{u}}{dt} = -\nabla\left(\frac{p'}{\rho_b}\right) + g\frac{\Theta'}{\Theta_b}\mathbf{k} - 2\mathbf{\Omega}\times\mathbf{u}' + \frac{d_e\mathbf{u}_e}{dt} \qquad (9)$$
$$\frac{d\Theta'}{dt} = -\mathbf{u}\cdot\nabla\Theta_e, \qquad (10)$$

where the primed quantities are determined as $\psi' = \psi - \psi_e$ with $\psi = u, v, w, \Theta, p$.

Note the occurrence of the term $\frac{d_e \mathbf{u}_e}{dt}$ as a forcing term on the right side of the momentum equation.

Motivation	Method	Setup	Results	Summary
00000	0000●	000	00000000	
Model setup				

- 1. 2D Cirrus cloud model:
 - Anelastic/non-hydrostatic model EULAG (Prusa et al., 2008)
 - Consistent two-moment bulk microphysics for cold temperature regime (T < 235 K; Spichtinger & Gierens, 2009):
 - Nucleation (homogeneous/heterogeneous)
 - Diffusional growth/evaporation
 - Sedimentation
 - Arbitrary many classes of ice, discriminated by formation
 - 1-1-relationship between background aerosol and ice crystals

here: pure homogeneous nucleation

2. Transient ambient states (as derived above) included

Motivation	Method
00000	00000

Results

Summary 00000

Orographic cirrus clouds

Motivation	Method	Setup
00000	00000	000

Setup for orographic waves

- 2D domain: 307 km× 20 km (resolution: dx=200 m, dz=50 m)
- Sponge layer at z = 15 km for absorbing gravity waves in order to avoid reflections
- Simulation time: $t_{tot} = 480$ min, time step: dt = 2 s
- ► Potential temperature profile with constant Brunt-Vaisala frequency $N = 0.0115 \text{ s}^{-1}$
- Gaussian-shaped mountain with height 400 m and halfwidth
 b = 12.5 km
- Ice supersaturated layer between 8 and 11 km.

Summary 00000

Setup for orographic waves

- non-transient simulations: $u_0 = 5.5/10/14.5 \,\mathrm{m \, s^{-1}}$
- transient simulations: horizontal wind changes linearly within 60 min
 - (a) increasing wind from $u_0 = 10\,\mathrm{m\,s^{-1}}$ to $u_0 = 14.5\,\mathrm{m\,s^{-1}}$
 - (b) decreasing wind from $u_0 = 10\,\mathrm{m\,s^{-1}}$ to $u_0 = 5.5\,\mathrm{m\,s^{-1}}$

Motivation	Method	Setup	Results
00000	00000	000	•0000000

Reference cases

Summary

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

$t{=}180 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

$t{=}200 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

 $t{=}220 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

$t{=}240 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

$t{=}260 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

t=280 min

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

$t{=}300 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

t=320 min

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

t=340 min

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

t=360 min

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

 $t{=}380 min$

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

t=400 min

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

t=420 min

Travelling wave packets

▶ Reference case: Stationary, hydrostatic wave with intrinsic horizontal phase velocity of c_I = −u₀, i.e. total horizontal phase velocity c_h = c_I + u₀ = 0

Setup

Results

00000000

- Transient cases:
 - ▶ Wave packets emitted at an earlier time step have intrinsic phase velocity $c_l \neq -u_0$, compared to actual background velocity u_0 .
 - ► Wave packets are not stationary anymore, because c_h ≠ 0, travelling upstream (decreasing case) or downstream (increasing case)
 - Interference of wave packets possible

Summary

Vertical section of vertical velocity/time evolution

Motivation	Method	Setup
00000	00000	000

Results 000000000

Summary 00000

Momentum flux/time evolution

Motivation	Method
00000	00000

Setup 000

Summary 00000

Cirrus clouds

JOHANNES GUTENBERG UNIVERSITAT MAINE

Results 0000000000 Summary 00000

Ice water path/reference cases

Motivation	Method	Setup	Results	Summary
00000	00000	000	00000000	00000

Cloud properties

Motivation	Method
00000	00000

Setup 000

Summary/Dynamics

- New scheme for handling time-dependent large-scale flows and their impact on smaller scales.
- First application for time-dependent stratified flows over mountains
- Time-dependent flows leads to strong changes in the gravity wave patterns (vertical velocity, vertical position of updraught/downdraught regions)
- Interaction of wave packets excited under different large-scale flows leads to non-linear effects
 - Vertical velocities after transition are smaller/larger than in the comparable steady state simulations
 - momentum flux shows maxima/minima during transition

Motivation	Method	Setup
00000	00000	000

Summary/Impact on cirrus clouds

- Horizontal displacement of clouds due to horizontally shifted wave packets
- Pronounced changes in ice water path
- Small changes in ice crystal number concentrations

Motivation	
00000	

00000

Setup 000 Summary 00000

Outlook

- Other flow regimes for flow over mountain
- Change in potential temperature
- Three-dimensional simulations
- ► Realistic large-scale flow from analyses/other model output
- Comparisons with measurements (?)

Motivation	
00000	

Method 00000 Setup 000 Results

Summary 00000

Outlook

Motivation 00000

Outlook

Method 00000 Setup 000 Results

Summary 00000

Thank you for your attention!

28 / 28