

Referenzexperimente im mehrphasigen Windkanal, numerische Simulationen und Validierung

Dipl.-Ing. Róbert Bordás, Prof. Dr.-Ing. Dominique Thévenin

Lehrstuhl für Strömungsmechanik und Strömungstechnik (LSS), Otto-von-Guericke-Universität Magdeburg

Modeling physical properties...

Cloud properties	modeled in wind tunnel
Saturated air	relative humidity > 95%
Vertical velocities ~ a few m/s	3 m/s air velocity
Liquid water content (LWC) ~ 0.1-1 g/m ³	1 g/m³
Relatively small drop diameters	d _{mean} ~ 15 μm
Number density ~ several hundred/cm ³	100-400/cm ³

Concentration / Collisions

Liquid volume fraction ($\varphi = 10^{-6}$) is well within the **dilute** domain. According to Abrahamson (1975) the collision rate can be defined as:

 $\approx 2.8 \cdot 10^{6} \text{ collisions/s in the}$ measurement section of the wind tunnel (0.45 m x 0.18 m x 0.4 m)

Average residence time in the

Denomination	Formula	In clouds	In the wind tunnel
Max. size of structures:	L	10 ² 10 ³ m	0.55 m
Reynolds number:	$\operatorname{Re} = \frac{v \cdot L}{D}$	10 ⁶ 10 ⁷	1.1·10 ⁵
Turbulence length scale:	$l = 0.16 \mathrm{Re}^{-1/8}$	10 ² m	0.04 m
Turbulent kinetic energy:	$k = \frac{3}{2}\overline{u'^2}$	∼ 1 m²/s²	0.1 m²/s²
Dissipation rate:	$\varepsilon = c_{\mu} \frac{k^{3/2}}{l}$	∼ 10 ⁻² m ² /s ³	0.14 m²/s³
Kolmogorov length scale:	$\eta = \left(\frac{\nu^3}{\varepsilon}\right)^{\frac{1}{4}}$	~ 10⁻³ m	4∙10 ⁻⁴ m
Kolmogorov time scale:	$\tau_{\eta} = \left(\frac{\nu}{\varepsilon}\right)^{\frac{1}{2}}$	∼ 10 ⁻² s	10 ⁻² s

Shadowgraphy results can also be used for the concentration calculation besides PDA.

Two-phase wind tunnel with water injection

Difficult requirements for the injection: •Small droplet diameters \Rightarrow Pressure atomizer •Broad spray \Rightarrow nozzle with 60° cone angle •Low droplet velocities, avoiding 6-hole pattern \Rightarrow injection in counter-flow direction

•Flow disturbance induced by the nozzle connector \Rightarrow only the lower half of the test-section is used for experiments

... and turbulence

Average residence time in the measurement section: ~ 0.15 s Average droplet amount in the measurement section: 7.8.10⁶

∼5% collision probability Diameter

Method	Phase	Result	u'	Remarks
LDV	air	v (point)	+	1-C, high resolution
PDA	drops	v,d (point)	+	1-C, high resolution
PIV	air/drops	V	-	2-C, large meas. area
Shadowgraphy	drops	v,d	-	2-C, collisions
PTV	drops	trajectories	-	3-D, Lagrange

	M1	M2	M3	M4
LDV	\checkmark	2008/IV	In process	2009/I
PDA	\checkmark	2008/IV	In process	2009/I
PIV*	\checkmark	2008/IV	\checkmark	2009/11
Shadowgraphy	\checkmark	-	-	2009/11

Results into the look-up-table for validation of companion numerical simulations: www.ovgu.de/isut/lss/metstroem

-200 -150 -100

-50

-50

0 50

100

50

γ-Koordinaten

Turbulenzintensität [-]

0

AP-E4 (first results):

Measuring the configuration M3 Vortex generation with the help of a cylinder. First results can be seen here. The final data will be transferred to the look-up table within the next weeks.

AP-E5 (2009):

Measuring the configuration M4

Experience with different nozzles available. A suitable nozzle pair has been identified and is available. The droplet spectra have been measured separately.

REFERENCE EXPERIMENTS IN A MULTIPHASE WIND TUNNEL, NUMERICAL SIMULATION AND VALIDATION

Volker John, Ellen Schmeyer

FR 6.1 – Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken

Droplet size distribution

• model for ideally mixed fluid, Shaw (2003)

 $\begin{aligned} \partial_t f(t,r) &= J(t,r) - \partial_r \big(g(t,r) f(t,r) \big) - \int_0^\infty \kappa(r,r') f(t,r) f(t,r') \, dr' \\ &+ \frac{1}{2} \int_0^r \left(1 - \frac{r'^3}{r^3} \right)^{-\frac{2}{3}} \kappa \left((r^3 - r'^3)^{\frac{1}{3}}, r' \right) f\left(t, (r^3 - r'^3)^{\frac{1}{3}} \right) f(t,r') \, dr' \end{aligned}$

- r – radius of droplets, internal coordinate

- f(t, r) – droplet size distribution

- J(t, r) – particle source term, nucleation rate

- -g(t,r) growth rate; model for sufficiently large droplets and small
- supersaturations typically given in the atmosphere: $g(t,r) = \gamma s/r$
- γ function of environment, like temperature
- s supersaturation
- \bullet equation is conservation law

change of droplet size distribution

= (nucleation + growth + collision + coalescence) of droplets

\bullet goals in the first period:

- couple droplet size distribution to flow field
- consider nucleation and growth of droplets
• model system in the first period (dimensionless):
- Navier–Stokes equations

• studied finite element methods:

- Streamline–Upwind Petrov–Galerkin (SUPG) FEM (standard method);
- Hughes, Brooks (1979)
- Spurious Oscillations at Layers Diminishing (SOLD) methods; J., Kno-

bloch (2007,2008)

- Finite Element Methods with Flux Corrected Transport (FEM–FCT); Kuzmin, Möller (2005), Kuzmin (2008)
- Local Projection Stabilization (LPS) scheme; Matthies, Tobiska, Skrzypacz (2007)
- Rotating body problem in 2D
 - SUPG (left), SOLD method from Knopp, Lube, Rapin (2006) with $C=0.5~({\rm right})$

- linear (left) and nonlinear FEM–FCT (right)

\bullet Transport through a domain in 3D

- SUPG (left), SOLD method from Knopp, Lube, Rapin (2006) with C = 0.4 (right)

-0.86

-0.533 -0.467

- 0.4

- 0.2

- linear (left) and nonlinear FEM–FCT (right)

 $\partial_t \mathbf{u} - 2\nabla \cdot (Re^{-1}\mathbb{D}(\mathbf{u})) + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \mathbf{0} \quad \text{in } (0, T] \times \Omega,$ $\nabla \cdot \mathbf{u} = 0 \quad \text{in } [0, T] \times \Omega,$

- transport equation for droplet size distribution

 $\partial_t f(t, \mathbf{x}, r) = J(t, \mathbf{x}, r) - \partial_r \big(g(t, r) f(t, \mathbf{x}, r) \big) - \mathbf{u} \cdot \nabla_{\mathbf{x}} f(t, \mathbf{x}, r)$

in $(0, T) \times \Omega \times (r_{\min}, r_{\max})$ - Ω – wind tunnel

Numerical simulation of convection–dominated equations with finite element methods

• model problem of transport equation for droplet size distribution: scalar convection-diffusion-reaction equations

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u + \mathbf{b} \cdot \nabla u + cu = 0 \quad \text{in } (0, T] \times \Omega$$

 ε – diffusion, **b** – convection, $\|\mathbf{b}\| \gg \varepsilon$, c – reaction

- variation of finite element solutions (optimal value = 1) and computing

times in second	S		
	method	variation	time
	SUPG	1.5567	2618
	SOLD, $C = 0.1$	1.3990	9501
	SOLD, $C = 0.5$	1.2546	22846
	SOLD, $C = 1.0$	1.1289	50693
	FEM–FCT linear	1.0076	2613
	FEM–FCT nonlinear	1.0013	47939
roforonco. I S	Comp Meth Appl	Mech En	$\operatorname{arg}(2008)$

- reference: J., S., Comp. Meth. Appl. Mech. Engrg. (2008), 198, 475 - 494, 2008

-0.000567		-0.000154	
- computing times	in seconds		
	method	Q_1	P_1
	SUPG	5989	9473
	SOLD, $C = 0.4$	33688	30932
	FEM–FCT linear	5920	6509
	FEM–FCT nonlinear	r 9768	10398

reference: J., S., Proceedings of BAIL 2008, in press
conclusion: linear FEM-FCT methods performed best with respect to ac-

curacy and efficiency

Coupling to turbulent flow simulation

turbulent flow simulation: variational multiscale method; J., Kaya (2005)
wind tunnel: (0, 0.5) × (0, 0.45) × (0, 0.18), using symmetry in z-direction
inflow: interpolation of measured mean velocity + random noise
coupling of the equations: work in progress

Goals for the second period

including collision and coalescence of dropletscomparison with experimental data