

Experimental investigation of two-phase flows representing cumulus cloud conditions

R. Bordás, E. Schmeyer, V. John and D. Thévenin

MetStröm Conference, 06/07/2011

Contents

- Experiments
 - Setup
 - Methods
 - Results
- Online database
- Experiments \Leftrightarrow simulations
- Conclusions

Contents

- Motivation
- Experiments
 - Setup
 - Methods
 - Results
- Online database
- Experiments \Leftrightarrow simulations
- Conclusions

MetStröm

Contents

- Motivation
- Experiments
 - Setup
 - Methods
 - Results
- Online database
- Experiments \Leftrightarrow simulations

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

Conclusions

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

MetStröm

Contents

- Motivation
- Experiments
 - Setup
 - Methods
 - Results
- Online database
- Experiments \Leftrightarrow simulations
- Conclusions

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

MetStröm

Contents

Motivation

- Setup
- Methods
- Results

• Online database

- Experiments 🗇 simula
- Conclusions

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

OSO

MetStröm

y-coordinates

Contents

- Motivation
- Experiments
 - Setup
 - Methods
 - Results
- Online database
- Experiments 🗇 simulations
- Conclusions

FAKULTÄT FÜR VERFAHRENS-

UND SYSTEMTECHNIK

OSO

0.5

MetStröm

y-coordinates

Contents

- Motivation
- Experiments
 - Setup
 - **Methods**
 - **Results**
- Online database
- Experiments 🗇 simulatio
- Conclusions

Motivation

- Poor reliability of precipitation forecasting
 - In particular warm rain initiation is a mystery
- Collision-induced growth in turbulent flows
 - Theory I observations: a factor of 2 or more

Motivation

- Poor reliability of precipitation forecasting
 - In particular warm rain initiation is a mystery
- Collision-induced growth in turbulent flows
 - Theory I observations: a factor of 2 or more

- Experiments in wind tunnels are essential
 - Non-intrusive measurements
 - Experimental characterization of both phases
 - Droplet-droplet interactions
 - Freely available database
- Quantifications of droplet collision rates
 - Comparison with theoretical predictions

83

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

Measurement planes in the extended ^{**}
test section: $x = -400$, 0, 400, 800 mm,
Considered droplet path: 1200 mm,
Observation time: ~ 0.5 s

	Grid to generate controlled turbulence					
Air	Water injection			৩	6	อ
	I		Vo	rtex		

generation

	clouds	wind tunnel
Humidity	Saturated	Saturated
<i>U</i> [m/s]	~ a few m/s	~ 2.53.0
LWC [g/m³]	~ 0.1-3.5	~ 2
<i>d</i> ₁₀ [µm]	10-20	8.512.5
<i>n</i> [#/cm³]	up to 7000	~ 2000

Configurations M1-M4

Droplet injection

- Counter–flow direction
- Droplet distribution, measured by means of PDA
- Lognormal probability density function (PDF)

$$y = f(x|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{(-\ln(x)-\mu)^2}{2\sigma^2}}$$

- Since narrow distribution, characteristic diameters are applicable:
 - Mean diameter $d_{10} = 13.46 \mu m$
 - Volume mean diameter $d_{30}=23.83 \ \mu m$

MetStröm

Measurement method	Measured phase	Measured quantity	Derived quantity
LDV	air	u, u'	Tu, TKE
PDA	drops	u, u', d	DSD, n _d , u _{rel}
PIV	air and drops	u, v, w	$\varepsilon \rightarrow \eta, \tau_k$
Shadowgraphy	drops	u, w, d	collisions

MetStröm

Measurement method	Measured phase	Measured quantity	Derived quantity
LDV	air	u, u'	Tu, TKE
PDA	drops	u, u', d	DSD, n _d , u _{rel}
PIV	air and drops	u, v, w	$\varepsilon \rightarrow \eta, \tau_k$
Shadowgraphy	drops	u, w, d	collisions

MetStröm

Measurement method	Measured phase	Measured quantity	Derived quantity
LDV	air	u, u'	Tu, TKE
PDA	drops	u, u', d	DSD, n _d , u _{rel}
PIV	air and drops	u, v, w	$\varepsilon \rightarrow \eta, \tau_k$
Shadowgraphy	drops	u, w, d	collisions

MetStröm

Measurement method	Measured phase	Measured quantity	Derived quantity
LDV	air	u, u'	Tu, TKE
PDA	drops	u, u', d	DSD, n _d , u _{rel}
PIV	air and drops	u, v, w	$\varepsilon \rightarrow \eta, \tau_k$
Shadowgraphy	drops	u, w, d	collisions

MetStröm

log_0(k)

10⁰

0.04

0.05

-3

PIV measurements

Velocity information at y=0, applied for the calculation of

- turbulent energy spectrum and
- dissipation rate
- E.g., for configuration M3:

Measured mean values of different configurations

	M1	M2 (grid)	M3 (cyl.)	M4	Cumulus clouds
<i>U</i> [m/s]	2.45	2.93	2.32	2.92	18
<i>u</i> ' [m/s]	0.25	0.18	0.33	0.35	0.8
<i>k</i> [m²/s²]	0.11	0.05	0.18	0.22	1
<i>d</i> ₁₀ [μm]	12.61	11.68	12.44	8.6	1020
$\varepsilon [\mathrm{m}^2/\mathrm{s}^3]$	0.025	0.012	0.026	0.055	0.0010.1
τ _k [s]	2.5e-2	3.5e-2	2.4e-2	1.7e-2	1e-2
η [m]	6.2e-4	7.4e-4	6.1e-4	5.1e-4	1e-3
λ_g	1.1e-2	5.6e-3	4.9e-3	9.3e-3	1e-1
Re_{λ}	170	70	60	200	1e+5

MetStröm

velocity

Pulsating flow

10000,000

Property	Cumulus clouds	Measured or derived by	Conf. M4 (x=0)	Pulsating flow (x=0)
<i>U</i> [m/s]	06	LDV	2.92	3.02
Re	10 ⁶ 10 ⁷	LDV	105	1.1 105
<i>u</i> ' [m/s]	0.8	LDV	0.35	0.84
$k [{ m m}^2/{ m s}^2]$	1	LDV	0.22	1.06
<i>d</i> ₁₀ [µm]	1020	PDA	8.5	9.2

6,00

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

Shadowgraphy – collision rate: experiments vs. theory Experiments (n with standard deviation) Experiments (n with standard deviation) O Experiments (D with standard deviation) O Experiments (D with standard deviation) X Theoretical approach (Williams and Crane) X Theoretical approach (Williams and Crane) Position of bluff body Position of bluff body -20 -20 **M3 M4** 0 ••••• 0 40 20 20 - 20-40 **0**-40 ÷ 60 z [mm] [**uu**] **z** 80 × 80 80 e 100 100 120 120 Θ 140 × -10-140 × 160 160 0E+00 2E+10 4E+10 6E+10 8E+10 1E+11 2E+10 0E+00 5E+09 1E+10 2E+10 N [1/m³s] N [1/m³s]

*Williams, J.J.E. and Crane, R.I. Particle collision rate in turbulent flow. Int. J. Multiphase Flow, 1983. 9: p. 421.

MetStröm

Comparison (PDA \Leftrightarrow Shadowgraphy)

FAKULTÄT FÜR VERFAHRENS-

- Are the experimental results realistic?
- Growth rate measured by PDA ⇔ growth by droplet collision

Online database – <u>www.ovgu.de/isut/lss/metstroem</u>

Continuously updated...

Online database – www.ovgu.de/isut/lss/metstroem

Continuously updated...

Online database - www.ovgu.de/isut/lss/metstroem

UND SYSTEMTECHNIK

Continuously updated...

MetStröm

Online database – <u>www.ovgu.de/isut/lss/metstroem</u>

FAKULTÄT FÜR VERFAHRENS-

UND SYSTEMTECHNIK

Continuously updated...

-200 -150 -100 -50 0 50 100 150 200

MetStröm

Online database - www.ovgu.de/isut/lss/metstroem

Companion numerical simulations

FAKULTÄT FÜR VERFAHRENS-

080

Main interface between experiments and simulations: PDA measurements of droplet number density including standard deviation for each size class

VST

VON GUERICKI

IVERSITAT

Conclusions

- Experiments in wind tunnel with key meteorological conditions
- Complete experimental characterization of the air flow and water spray
- Results freely available in a database accessible at http://www.ovgu.de/isut/lss/metstroem.
- Successful validation of companion simulations
- Experimental non-intrusive measurement of droplet collision rate
 - Comparison with theoretical predictions
 - The measured collision rates are higher than predicted by theory, typically by a factor of 2 to 6.

MetStröm

Thank you for your attention!

http://www.ovgu.de/isut/lss/metstroem http://metstroem.mi.fu-berlin.de/

bordas@ovgu.de