Towards Multiscale Simulations of Cloud Turbulence

Ryo Onishi^{*1,2} and Keiko Takahashi^{*1}

*1Earth Simulator Center/JAMSTEC
*2visiting scientist at Imperial College, London
 (Prof. Christos Vassilicos)

International MetStorm Conference 9 June, 2011

Some figures and slides are removed from original talk

Contents of my talk

- MSSG (Multi-Scale Simulator for the Geoenvironment)
- High-resolution cloud simulations (LES) with MSSG-Bin microphysical scheme
 - Turbulent collisions of droplets
 - RICO
- DNS for colliding droplets in high-Re flows
 - our numerical schemes
 - validation of turbulent collision models

Earth Simulator 2

Earth Simulator

Mar. 2002 - Sept. 2008

Processors : 5,120 (640 nodes)Peak performance : 40 TFLOPSMain memory : 10 TB

Earth Simulator 2

Mar. 2009 -

Processors : 1,280 (160 nodes) Peak performance : 131 TFLOPS Main memory : 20 TB

Multi-Scale Simulator for the Geoenvironment (MSSG)

- Applicable to global, regional and local scales seamlessly
- > Ying-Yang grid for globe
- Consists of 3 modes; atmos. / ocean / coupled
- Highly optimized for the Earth Simulator (ES)

Seasonal simulation

Observation (CMAP, 1979-2001JJA)

 $\begin{array}{l} \textbf{MSSG-A} \\ (\Delta_{H} = 40 \text{ km}, 32 \text{ levels}, 5 \text{yrs ave-JJA}) \end{array}$

precipitation at JJA

MJQ experiment NICAM-7km (Miura et al., 2008) 5[m/s] observation (TRMM 3B42) 60E 90E 120E 150E 5[m/s] MSSG-10km 5. 90E 120E 60E 150E 180 10 Time [day] 5[m/s]

20

25

30.

4ΰE

70E

6ÓE 5ÔE

80E 9ÓE 100E 110E 120E 130E 140E 150E 160E 170E

Longitude

180

SIMULATOR

30 days from Dec 15, 2006

Coupled simulation for a Typhoon

High-resolution cloud simulations with Bin scheme

turbulence (large-eddy) resolving mesoscale simulation

Use of MSSG as a mesoscale model

Yin-Yang system for global simulations

Ref.

Kageyama & Sato (2004)*GGG* Baba et al. (2010)*MWR*

lat-long system for regional simulations

Bulk microphysical scheme

same.

MSSG-Bulk model (Reisner et al. (1998) with modification by Thompson (2004))

Bulk-Bin hybrid microphysical scheme

12 EARTH SIMULATOR

Collision growth calculation in Bin scheme

Stochastic Collision Equation (SCE)

$$\left(\frac{\partial n_p(r)}{\partial t}\right)_{col} = \frac{1}{2} \int_0^r K_c(r'',r') n_p(r'') n_p(r') dr' - \int_0^\infty K_c(r,r') n_p(r) n_p(r') dr'$$

Collision kernel

(No turbulent collisions)

$$K_{c}(r_{1}, r_{2}) = \pi R^{2} |V_{\infty}(r_{1}) - V_{\infty}(r_{1})|$$

(*R* : collision radius (= r_1 + r_2), V_{∞} :settling velocity)

Turbulent Collision Kernel

 $\langle K_c(r_1,r_2,l_\eta,\operatorname{Re}_\lambda)\rangle = 2\pi R^2 \langle |w_r|\rangle g(R)$

 $/w_r$: radial relative velocity at contact (Wang et al. 2000)

g(R): radial distribution function at contact (Onishi 2005, Onishi et al. 2007 etc...)

SIMULATOR

Algorithm for explicit turbulent collision calculation

Field campaign for shallow cumulus developing over the ocean near the Barbuda islands (18.0N;61.5W).

RICO model intercomparison

<u>surface fluxes</u>

 $\begin{array}{l} \text{`Heat flux: } w \, \theta_1 = -C_h * / U / * (\, \theta_1 - SST * (p_0 / p) \, (R_d / c_p)) \\ \text{`Water vapor flux: } w q_t = -C_q * / U / * (q_t - q_{sat} \, (T_{sfc})) \\ \text{`Momentum flux: } \\ u w = -u * C_m * / U / \\ v w = -v * C_m * / U / \\ \end{array}$

where, $C_m = 0.0012\overline{29}$, $C_h = 0.001094$, $C_q = 0.001133$

extra 1-hour simulation for visualization (MSSG-Bulk)

1-hour-simulation with MSSG-Bulk method (for visualization)

Visualization – Bulk v.s. Bin scheme

⊿x=100m

Bulk scheme

Bin scheme

(r>40µm droplets are recognized as rain drops)

Clouds distribute uniformly in Bulk simulation (w/o CCN), while rather patchily in Bin simulation (with CCN).

www.eol.ucar.edu/ projects/rico/

Earth Simulator Center

Cloud simulation using MSSG-Bin scheme

Earth Simulator Center

Δ_H=25m, Δ_V=20m
 512x512x200 grids
 33 bins
 3D Mie scattering

with Kaiser-Wilhelm Memorial Church

Earth Simulator Center

an li

Image © 2010 AeroWest © 2010 Tele Atlas © 2010 PPWK © 2010 Geocentre Consulting

高度 15 メート

2009 GOO

Mixing ratios of liquid water (q_i) and rain water (q_i)

Significant impact of turbulent collisions

Can we really trust this result?

Applicability of the turbulent collision model has not been confirmed.

- $\square \operatorname{Re}_{\lambda}=10^{3\sim4}$ in cumulus clouds,
- □while available DNS data is for Re_λ<10².

\square We need DNS data for high Re $_{\lambda}$.

DNS for colliding droplets in high-Re flows

>Our numerical schemes
>Validation of turbulent
 collision models

Turbulent collision kernel model in isotropic turbulence

$$\left\langle K_{c}\left(\frac{r_{1}}{l_{\eta}},\frac{r_{2}}{l_{\eta}},\operatorname{Re}_{\lambda},\left(\frac{\rho_{p}}{\rho_{f}}\right)\right)\right\rangle = 2 \pi R^{2}\left\langle |w_{r}|\right\rangle g(R)$$
St
$$\begin{cases} R: \text{ collision radius } (=r_{1}+r_{2}) \\ |w_{r}|: \text{ radial relative velocity at contact} \\ g(R): \text{ radial distribution function at contact} \\ preferential distribution \end{cases}$$

Recent DNS data on colliding inertialparticles in air turbulence

	fluid	cell-	paralle	
Paper name	calculat	index	liza-	$Re_{\lambda,max}$
Wang et al (2000) JEM		method	-	75 /
	r Sh	vv	_	73.4
Reade&Collins(2000) <i>PF</i>	PSM	-	-	82.5
Zhou et al.(2001) <i>JFM</i>	PSM	W	-	58
Ayala et al.(2007) <i>JCP</i>	PSM	W	shared	72.4
Ayala et al.(2008) <i>NJP</i>	PSM	W	shared	72.4
Wang et al.(2008) <i>NJP</i>	PSM	W	shared	72.4
Woittiez et al.(2009) <i>JAS</i>	FDM	-	-	84.9
Onishi et al.(2009) <i>PF</i>	PSM	w/o	shared	68.4

Flow: Euler Particle: Lagrange

Table 1 Review of recent studies on collision frequencies of inertia particles in
stationary isotropic turbulence.

Pseudo-Spectral Model (PSM) has been used for flow!

Our numerical schemes for high-Re DNS

Steady isotropic air turbulence:

Finite-Difference Model (FDM)

- 4th-order conservative scheme (Morinishi et al. (1998)*JCP*)
- MPI, i.e., distributed-memory parallelization, for 3D domain decomposition
- RCF(Reduced-Communication Forcing) to attain a stationary state (Onishi et al. (2011)JCP)

Particle motion:

- Lagrangian tracking method
- Cell-index method for efficient collision detection
- MPI for 3D domain decomposition

3D domain decomposition

Checks of our code

Collision kernels of St=1 droplets

Radial distribution function -g(R=2r)model $\langle K_c(r,r) \rangle = 2\pi R^2 \langle |w_r| \rangle g(2r)$

Empirical, but with some physical support 31

Concluding Remarks

MSSG (Multi-Scale Simulator for the Geoenvironment)
Non-hydrostatic atmos-ocean coupled model

- Yin-Yang grid
- High-resolution cloud simulations (LES) with MSSG-Bin scheme
 - useful to see the turbulence role in clouds
 - \Box <u> Δ =25m</u> simulations are feasible on the ES2

DNS for colliding droplets in high-Re flows

- \square useful to check the applicability of turbulent collision models to cloud turbulence with ${\rm Re}_{\lambda}{=}10^{3{\sim}4}$
- \square Data for up to $\text{Re}_{\lambda}{=}340$ has been obtained, and one for $\text{Re}_{\lambda}{=}540$ is coming.

-These atmos. flows have energy scales L of O(1m).

Turbulence models validated by the DNS for L=O(10m) will strengthen the $\Delta=O(10m)$ cloud simulations, on O(10 PFLOPS) supercomputers!

EARTH SIMULATOR