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Motivation

Motivation for space- and time-regularization

Mathematical models for atmospheric and oceanic flows exhibit
the following problems

time step in explicit schemes is restricted by the fastest modes
(e.g., gravity, acoustic waves)
Standard approach → Semi-implicit time stepping schemes

processes on unresolved (subgrid) scales interact in complex ways
with those on resolved scales
Standard approach → LES, RANS

Our approach → Introduce a regularized set of analytical
equations which do not suffer from such problems
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Motivation

Motivation for space- and time-regularization

Our work considers two types of regularization
Time (τ ) regularization = Improve the computational efficiency by
introducing a regularized (i.e. smoothed) pressure field

slows down the fastest waves
allows explicit time integration with a time step analogous to that of
a semi-implicit method.

Space (alpha) regularization = Parametrize the unresolved
scales by introducing a regularized (i.e. smoothed) velocity field

conserves mass, potential vorticity, and potential enstrophy
preserves the validity of Kelvin’s circulation theorem

Both regularized models

can be interpreted as averaging out small scale fluctuations

lead to analytic problems that can be proved to be well-posed

do not enhance the viscosity of the flow
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A 3D hydrostatic Euler model

3D Euler: The hydrostatic Euler equations

We consider a hydrostatic Euler system given by

∂tv + (k · ∇ × v + f )v⊥ + w∂zv + cp θ∇π +
1
2
∇|v|2 = 0 (1)

∂ρ

∂t
+ ∇ · (ρ v) = 0 (2)

∂µ

∂t
+ ∇ · (µ v) = 0 (3)

augmented with a hydrostatic

cp θ
∂π

∂z
+ g = 0 (4)

and a thermodynamic relation
R
ps

ρθ = π
1−κ

κ . (5)

Notation: v = (u, v)T – horizontal velocity, w – vertical velocity, ρ – density,
θ – potential temperature, cp – specific heat of dry air, k = (0, 0, 1)T ,
g – free-fall acceleration, f – Coriolis parameter, ps – surface pressure,
R – gas constant, π = µ

κ

1−κ – Exner pressure, κ ≈ 0.4.
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A 3D hydrostatic Euler model

3D Euler: τ -regularization

The τ -regularized system is defined by

∂tv + (k · ∇ × v + f )v⊥ + w∂zv + cp θ∇π̃ + ∇
1
2
|v|2 = 0 (6)

∂ρ

∂t
+ ∇ · (ρ v) = 0 (7)

∂µ

∂t
+ ∇ · (µ v) = 0, (8)

where smoothed Exner pressure π̃ is computed from π by solving
»
1 − τ

2 c2
s

ρθ2
∇ · (ρθ

2∇)

–
π̃ = π + τ

2R (9)

with τ ≥ 0, a smoothing parameter, and R given by

R =
c2

s

cpρθ2

∂

∂z

„
gρθ

1 + τ 2g∂z log θ

«
. (10)

Notation: cs – speed of sound
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A 3D hydrostatic Euler model

3D Euler: α-regularization

The α-regularized system is defined by

∂tv + (k · ∇ × v + f )ev⊥ + w∂zv + cp θ∇π (11)

+∇

»
ev · v −

1
2

“
|ev|2 + α

2|∇ev|2
”–

= 0 (12)

∂ρ

∂t
+ ∇ ·

`
ρ ev

´
= 0 (13)

∂µ

∂t
+ ∇ ·

`
µ ev

´
= 0, (14)

where ṽ is computed from v by solving
h
1 − α

2∇ · ∇
i

ṽ = v, (15)

and α ≥ 0 is a smoothing parameter.
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Discretization

3D Euler: Horizontal discretization

The horizontal discretization follows
the ICON framework (Bonaventura,
2005) and is based on a triangular grid

The normal velocities in the
horizontal are located at edge
midpoints

Pressure and transported
variables are located at the cell
centers
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Discretization

3D Euler: Vertical and time discretizations

The vertical velocity w is located
on layer interfaces.

All variables except w are
defined in the middle of a layer

The vertical velocity is treated as
a Lagrange multiplier that
enforces the hydrostatic balance

The regularization problem is solved in each horizontal layer; thus,
we avoid solving a global 3D problem

Several time stepping schemes are implemented

3rd order total variation bounded (TVB) Runge-Kutta method
(Cockburn et al, 1999)
4th order strong stability preserving Runge-Kutta method
(Spiteri, Ruuth, 2002)
Störmer-Verlet method
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cartesian geometry

Baroclinic instability – cartesian case
The 3D model is run for the Jablonowski baroclinic instability test on an f-plane
(Jablonowski, 2006)

Domain: [0, 40000] × [0, 6000] × [0, 30] (in km)
Horizontal resolution of 312.5 km

30 horizontal layers with ∆z = 1000 m
The initial atmosphere is in hydrostatic and geostrophic balance except for a
small wind perturbation

Third order TVB Runge-Kutta method with ∆t varying from 600s (unregularized)
up to 2400s (α=1.25)
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wise at z = 11000m (left),

crosswise at x=20000km
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cartesian geometry

Restoration of the geostrophic balance

The geostrophic balance equation

fv⊥ + cp θ∇π = 0 (16)

has for α-regularized systems the form

fev⊥ + cp θ∇π = 0 (17)

Possible solutions:

Replace π by eπ that satisfies the geostrophic balance
→ Requires knowledge of the analytical form of ev, delays advance of the
baroclinic instability due to smoother initial pressure field

Assign the balanced velocity to ev and define v using v =
ˆ
1 − α2∇ · ∇

˜
ṽ

→ Can be computed automatically; produces a very rough initial velocity field for
large α, difficult to stabilize.
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cartesian geometry

Results(cartesian) – vorticity

Vorticity at z = 500m at day 12. Top to bottom: no regularization, τ -

regularization, α-regularization (α = 1), α-regularization (α = 1.25)

The results of the
τ -regularization model are
very similar to those of the
unregularized system

α-regularization turns out
to be very sensitive to the
choice of alpha

Initial conditions
re-balanced by smoothing
out the pressure field
clearly slow down the
advance of the instability
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spherical geometry

Baroclinic instability – spherical case
Jablonowski-Williamson baroclinic instability test on a sphere (Jablonowski,
Williamson, 2007)

Implementation within ICON hydrostatic core
Initial condition re-balanced by appying the Helmholtz-operator to the horizontal
velocity

Initial axial velocity (m/s) at 850hPa
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spherical geometry

Results(spherical) – vorticity

850hPa vorticity at day 9. Top to bottom: no regularization, α-regularization

(α = 0.5), α-regularization (α = 0.8), α-regularization (α = 1)

Re-balancing of the initial
conditions by applying the
Helmholtz-operator to the
velocity field increases the
instability

α-regularization allows for
a much larger time steps
than those of unregularized
model
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spherical geometry

Results(spherical) – temperature

850hPa temperature at day 9. Top to bottom, left to right: no regularization, α-regularization (α = 0.5), α-regularization (α = 0.8),

α-regularization (α = 1)
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Theoretical results

Theoretical investigation of time and space regularization models conducted
in the framework of this project resulted in

a systematic derivation of a pressure regularization for the vertical slice
Euler model in combination with a Störmer-Verlet method (Hundertmark
and Reich, 2007)

proof of the dependence of the longtime behavior of solutions to the
Navier-Stokes-α, Leray-α, and Navier-Stokes-ω systems on a finite set
of grid values or Fourier modes (Korn, 2011)

an estimate of the number of determining nodes/modes in terms of flow
parameters for each model (as above)
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Outlook and open questions

Boundary conditions: The vast majority of theoretical and numerical
work on the α-equations considers periodic domains. The extension to
bounded domains poses questions such as:

How to choose the mathematically reasonable & physically sound
boundary conditions?
How the smoothing parameter should be adapted in the vicinity of a
boundary?

Non-uniform grids: Grids with varying spatial resolution might need a
scale-selective filtering in the transition region between different
resolutions.

How the smoothing parameter α should be chosen to provide an
adequate filter?
What are the dispersion properties of regularized models on such
grids?
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