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Motivation

Motivation for space- and time-regularization

@ Mathematical models for atmospheric and oceanic flows exhibit
the following problems

@ time step in explicit schemes is restricted by the fastest modes
(e.g., gravity, acoustic waves)
Standard approach — Semi-implicit time stepping schemes

@ processes on unresolved (subgrid) scales interact in complex ways
with those on resolved scales
Standard approach — LES, RANS

@ Our approach — Introduce a regularized set of analytical
equations which do not suffer from such problems

@
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Motivation for space- and time-regularization

Our work considers two types of regularization

@ Time (7) regularization = Improve the computational efficiency by
introducing a regularized (i.e. smoothed) pressure field
@ slows down the fastest waves
@ allows explicit time integration with a time step analogous to that of
a semi-implicit method.
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Motivation for space- and time-regularization

Our work considers two types of regularization

@ Time (7) regularization = Improve the computational efficiency by
introducing a regularized (i.e. smoothed) pressure field
@ slows down the fastest waves
@ allows explicit time integration with a time step analogous to that of
a semi-implicit method.
@ Space (alpha) regularization = Parametrize the unresolved
scales by introducing a regularized (i.e. smoothed) velocity field
@ conserves mass, potential vorticity, and potential enstrophy
@ preserves the validity of Kelvin’s circulation theorem

@
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Motivation for space- and time-regularization

Our work considers two types of regularization

@ Time (7) regularization = Improve the computational efficiency by
introducing a regularized (i.e. smoothed) pressure field

@ slows down the fastest waves
@ allows explicit time integration with a time step analogous to that of
a semi-implicit method.

@ Space (alpha) regularization = Parametrize the unresolved
scales by introducing a regularized (i.e. smoothed) velocity field

@ conserves mass, potential vorticity, and potential enstrophy
@ preserves the validity of Kelvin’s circulation theorem

Both regularized models
@ can be interpreted as averaging out small scale fluctuations
@ lead to analytic problems that can be proved to be well-posed

@ do not enhance the viscosity of the flow % v-]
s
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A 3D hydrostatic Euler model

3D Euler: The hydrostatic Euler equations

We consider a hydrostatic Euler system given by

E)tv+(k-V><v+f)vL+W82v+cp9V7r+%V|v|2 -0
9p _
ot +V-(pv) = 0 )
o _
ot +V-(uv) = 0 ?3)
augmented with a hydrostatic
or
cp b 5 +9=0 4)
and a thermodynamic relation
R 1—r
— =7 " . 5
o 0= ®)

Notation: v = (u,v)T — horizontal velocity, w — vertical velocity, p — density,
6 — potential temperature, ¢, — specific heat of dry air, k = (0,0, 1)T,

g — free-fall acceleration, f — Coriolis parameter, ps — surface pressure, g
R —gas constant, # = u1—-~ — Exner pressure, k = 0.4.
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A 3D hydrostatic Euler model

3D Euler: 7-regularization

The r-regularized system is defined by

Btv+(k~V><v+f)vl+wazv+cp0V7”r+V%|v|2 = 0 (6)

9p _
ot +V-(pv) = 0 @)

o _
AtV ) =0 @®

where smoothed Exner pressure 7 is computed from 7 by solving

2
2 C 2 - 2

{1—7 p—52V~(p9V)}W:7r+TR 9)

with 7 > 0, a smoothing parameter, and R given by

2
- 9p0 . (10)
cppb? 0z \ 1+ 7290, log 6

Notation: cs — speed of sound % q
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A 3D hydrostatic Euler model

3D Euler: a-regularization

The a-regularized system is defined by
AV + (k- V x v+t +wdv+cpVn
S 10 21902
+v {v V-3 (|v| + 0|V )]
Op

ﬁ-ﬁ-V'(pV)

o ~
ﬁ + V. (MV)

where V is computed from v by solving
|:1—()42V'V]\7:V,

and « > 0 is a smoothing parameter.

(11)
(12)

(13)

(14)

(15)
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Discretization

3D Euler: Horizontal discretization

The horizontal discretization follows
the ICON framework (Bonaventura,
2005) and is based on a triangular grid

@ The normal velocities in the
horizontal are located at edge
midpoints

@ Pressure and transported
variables are located at the cell
centers




3D Euler equations
(o] J

Discretization

3D Euler: Vertical and time discretizations

@ The vertical velocity w is located
on layer interfaces.

@ All variables except w are
defined in the middle of a layer

@ The vertical velocity is treated as
a Lagrange multiplier that
enforces the hydrostatic balance

@ The regularization problem is solved in each horizontal layer; thus,
we avoid solving a global 3D problem
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Discretization

3D Euler: Vertical and time discretizations

@ The vertical velocity w is located
on layer interfaces.

@ All variables except w are
defined in the middle of a layer

@ The vertical velocity is treated as
a Lagrange multiplier that
enforces the hydrostatic balance

@ The regularization problem is solved in each horizontal layer; thus,
we avoid solving a global 3D problem

@ Several time stepping schemes are implemented

@ 3rd order total variation bounded (TVB) Runge-Kutta method
(Cockburn et al, 1999)
@ 4th order strong stability preserving Runge-Kutta method

(Spiteri, Ruuth, 2002) 7
@ Stormer-Verlet method : Lﬁ!l
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cartesian geometry

Baroclinic instability — cartesian case

The 3D model is run for the Jablonowski baroclinic instability test on an f-plane
(Jablonowski, 2006)

@ Domain: [0,40000] x [0,6000] x [0,30] (in km)
Horizontal resolution of 312.5 km
30 horizontal layers with Az = 1000 m
The initial atmosphere is in hydrostatic and geostrophic balance except for a
small wind perturbation
Third order TVB Runge-Kutta method with At varying from 600s (unregularized)
up to 2400s (a=1.25)

Initial axial velocity; length-
— wise at z = 11000m (left),
crosswise at x=20000km
(right)

1
Initial vorticity

atz = 500m
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cartesian geometry

Restoration of the geostrophic balance

The geostrophic balance equation

vl 4+c0Vr=0 (16)
has for a-regularized systems the form

fvl+cpovr=0 a7

Possible solutions:

@ Replace 7 by 7 that satisfies the geostrophic balance
— Requires knowledge of the analytical form of v, delays advance of the
baroclinic instability due to smoother initial pressure field

@ Assign the balanced velocity to vV and define v using v = [1 — a2V - V] ¥
— Can be computed automatically; produces a very rough initial velocity field for

large «, difficult to stabilize.
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cartesian geometry

Results(cartesian) — vorticity

B gy @
~m¢h\\ ; @ The results of the

T-regularization model are
very similar to those of the
*“'a-’\"\ s unregularized system

! @ a-regularization turns out

to be very sensitive to the
choice of alpha

b 2 | @ Initial conditions
re-balanced by smoothing
‘ out the pressure field
vom = - % clearly slow down the

advance of the instability

Vorticity at z = 500m at day 12. Top to bottom: no regularization, 7-
regularization, «-regularization (o« = 1), ae-regularization (o« = 1.25) !ﬁ l
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spherical geometry

Baroclinic instability — spherical case

Jablonowski-Williamson baroclinic instability test on a sphere (Jablonowski,
Williamson, 2007)

@ Implementation within ICON hydrostatic core
@ Initial condition re-balanced by appying the Helmholtz-operator to the horizontal

velocity

ICON
U (time 0[20080901000], pllev 10) test hat jww R2B04L31 0001.nc
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Initial axial velocity (m/s) at 850hPa
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spherical geometry

Results(spherical) — vorticity

850 hPa vorticity (10~S~—5~N~s~S~—1~N~) at day 9 Jiw R2BO4

30E  60E 90E 120E 150E 180 150W 120W SOW  6OW  G0W
—— s
e 5 6 30 3 6 0 LB
850 hPa vorticity (10~S~—5~N~s~S~—1~N~) at day 9 JWw R2B04
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850 hPa vorticity (10~S~—5~N~s~S~—1~N~) at day 9 Jiw R2BO4
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850 hPa vorticity (10~S~—5~N~s~S~—1~N~) at day 9 JWw R2B04

sy =
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850hPa vorticity at day 9. Top to bottom: no regularization, a-regularization

(o = 0.5), «e-regularization (o« = 0.8), a-regularization (o« = 1)

Re-balancing of the initial
conditions by applying the
Helmholtz-operator to the
velocity field increases the
instability

a-regularization allows for
a much larger time steps
than those of unregularized
model
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Results(spherical) — temperature

850 hPa T (K) at day 9 IWw R2B04 850 hPa T (K) at day 9 JWw R2B04
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850hPa temperature at day 9. Top to bottom, left to right: no regularization, «-regularization (¢ = 0.5), «-regularization (a« = 0.8).

«a-regularization (o = 1)
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Advances in theory

Theoretical results

Theoretical investigation of time and space regularization models conducted
in the framework of this project resulted in

@ a systematic derivation of a pressure regularization for the vertical slice
Euler model in combination with a Stérmer-Verlet method (Hundertmark
and Reich, 2007)

@ proof of the dependence of the longtime behavior of solutions to the
Navier-Stokes-«, Leray-«, and Navier-Stokes-w systems on a finite set
of grid values or Fourier modes (Korn, 2011)

@ an estimate of the number of determining nodes/modes in terms of flow

parameters for each model (as above)
@
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Outlook and open questions

@ Boundary conditions: The vast majority of theoretical and numerical
work on the a-equations considers periodic domains. The extension to
bounded domains poses questions such as:

@ How to choose the mathematically reasonable & physically sound
boundary conditions?

@ How the smoothing parameter should be adapted in the vicinity of a
boundary?

@ Non-uniform grids: Grids with varying spatial resolution might need a
scale-selective filtering in the transition region between different
resolutions.

@ How the smoothing parameter « should be chosen to provide an
adequate filter?
@ What are the dispersion properties of regularized models on such

grids?
@
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