Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions

Space-Time Regularizations for the ICON Model

V. Aizinger², P. Korn², S. Reich¹, T. Hundertmark¹

¹Institut für Mathematik Universität Potsdam Am Neuen Palais 10, 14469 Potsdam

²Ozean im Erdsystem, Max–Planck–Institut für Meteorologie, Bundesstraße 53, 20146 Hamburg

Berlin, 6 June 2011

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions ○
Outline				

Introduction
 Motivation

2 3D Euler equations

- A 3D hydrostatic Euler model
- Discretization

3 Numerical results

- cartesian geometry
- spherical geometry
- Advances in theory
- Outlook and open questions

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
Outline				

2 3D Euler equations
 A 3D hydrostatic Euler model
 Discretization

Numerical results
 cartesian geometry
 spherical geometry

Advances in theory

Outlook and open questions

Introduction ●○	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions	
Motivation					
Motivation for space- and time-regularization					

- Mathematical models for atmospheric and oceanic flows exhibit the following problems
 - time step in explicit schemes is restricted by the fastest modes (e.g., gravity, acoustic waves)
 Standard approach → Semi-implicit time stepping schemes
 - processes on unresolved (subgrid) scales interact in complex ways with those on resolved scales
 Standard approach → LES, RANS
- Our approach → Introduce a regularized set of analytical equations which do not suffer from such problems

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
0•				
Motivation				

Motivation for space- and time-regularization

Our work considers two types of regularization

- Time (τ) regularization = Improve the computational efficiency by introducing a regularized (i.e. smoothed) pressure field
 - slows down the fastest waves
 - allows explicit time integration with a time step analogous to that of a semi-implicit method.
- Space (alpha) regularization = Parametrize the unresolved scales by introducing a regularized (i.e. smoothed) velocity field
 - conserves mass, potential vorticity, and potential enstrophy
 - preserves the validity of Kelvin's circulation theorem

Both regularized models

- can be interpreted as averaging out small scale fluctuations
- lead to analytic problems that can be proved to be well-posed
- do not enhance the viscosity of the flow

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
00				
Motivation				

Motivation for space- and time-regularization

Our work considers two types of regularization

- Time (τ) regularization = Improve the computational efficiency by introducing a regularized (i.e. smoothed) pressure field
 - slows down the fastest waves
 - allows explicit time integration with a time step analogous to that of a semi-implicit method.
- Space (*alpha*) regularization = Parametrize the unresolved scales by introducing a regularized (i.e. smoothed) velocity field
 - conserves mass, potential vorticity, and potential enstrophy
 - preserves the validity of Kelvin's circulation theorem

Both regularized models

- can be interpreted as averaging out small scale fluctuations
- lead to analytic problems that can be proved to be well-posed
- do not enhance the viscosity of the flow

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
00				
Motivation				

Motivation for space- and time-regularization

Our work considers two types of regularization

- Time (τ) regularization = Improve the computational efficiency by introducing a regularized (i.e. smoothed) pressure field
 - slows down the fastest waves
 - allows explicit time integration with a time step analogous to that of a semi-implicit method.
- Space (alpha) regularization = Parametrize the unresolved scales by introducing a regularized (i.e. smoothed) velocity field
 - conserves mass, potential vorticity, and potential enstrophy
 - preserves the validity of Kelvin's circulation theorem

Both regularized models

- can be interpreted as averaging out small scale fluctuations
- lead to analytic problems that can be proved to be well-posed
- do not enhance the viscosity of the flow

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
Outline	\ \			

IntroductionMotivation

2 3D Euler equations

A 3D hydrostatic Euler modelDiscretization

Numerical results
 cartesian geometry
 spherical geometry

Advances in theory

Outlook and open questions

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions	
	00000				
A 3D hydrostatic Fuler model					

3D Euler: The hydrostatic Euler equations

We consider a hydrostatic Euler system given by

$$\partial_t \mathbf{v} + (\mathbf{k} \cdot \nabla \times \mathbf{v} + f) \mathbf{v}^{\perp} + w \partial_z \mathbf{v} + c_\rho \, \theta \, \nabla \pi + \frac{1}{2} \nabla |\mathbf{v}|^2 = 0 \qquad (1)$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0} \qquad (2)$$

$$\frac{\partial \mu}{\partial t} + \nabla \cdot (\mu \mathbf{v}) = \mathbf{0} \qquad (3)$$

augmented with a hydrostatic

$$c_{\rho} \theta \frac{\partial \pi}{\partial z} + g = 0 \tag{4}$$

and a thermodynamic relation

$$\frac{R}{\rho_s}\rho\theta = \pi^{\frac{1-\kappa}{\kappa}}.$$
(5)

Notation: $\mathbf{v} = (u, v)^T$ – horizontal velocity, w – vertical velocity, ρ – density, θ – potential temperature, c_p – specific heat of dry air, $\mathbf{k} = (0, 0, 1)^T$, g – free-fall acceleration, f – Coriolis parameter, p_s – surface pressure, R – gas constant, $\pi = \mu^{\overline{1-\kappa}}$ – Exner pressure, $\kappa \approx 0.4$.

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions	
	0000				
A 3D hydrostatic Euler model					

3D Euler: τ **-regularization**

The τ -regularized system is defined by

$$\partial_t \mathbf{v} + (\mathbf{k} \cdot \nabla \times \mathbf{v} + f) \mathbf{v}^{\perp} + w \partial_z \mathbf{v} + c_\rho \, \theta \, \nabla \tilde{\pi} + \nabla \frac{1}{2} |\mathbf{v}|^2 = 0 \qquad (6)$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}$$
 (7)

$$\frac{\partial \mu}{\partial t} + \nabla \cdot (\mu \mathbf{v}) = 0,$$
 (8)

where smoothed Exner pressure $\tilde{\pi}$ is computed from π by solving

$$\left[1 - \tau^2 \frac{c_s^2}{\rho \theta^2} \nabla \cdot (\rho \theta^2 \nabla)\right] \tilde{\pi} = \pi + \tau^2 \mathcal{R}$$
(9)

with $\tau \geq$ 0, a smoothing parameter, and $\mathcal R$ given by

$$\mathcal{R} = \frac{c_{\rm s}^2}{c_{\rm p}\rho\theta^2} \frac{\partial}{\partial z} \left(\frac{g\rho\theta}{1 + \tau^2 g\partial_z \log\theta} \right). \tag{10}$$

Notation: c_s – speed of sound

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions	
	00000				
A 3D hydrostatic Euler model					

3D Euler: α **-regularization**

The α -regularized system is defined by

$$\partial_t \mathbf{v} + (\mathbf{k} \cdot \nabla \times \mathbf{v} + f) \widetilde{\mathbf{v}}^{\perp} + w \partial_z \mathbf{v} + c_\rho \,\theta \,\nabla\pi \tag{11}$$

$$+\nabla\left[\widetilde{\mathbf{v}}\cdot\mathbf{v}-\frac{1}{2}\left(|\widetilde{\mathbf{v}}|^{2}+\alpha^{2}|\nabla\widetilde{\mathbf{v}}|^{2}\right)\right] = 0$$
(12)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \, \widetilde{\mathbf{v}} \right) = \mathbf{0} \tag{13}$$

$$\frac{\partial \mu}{\partial t} + \nabla \cdot \left(\mu \, \widetilde{\mathbf{v}} \right) = \mathbf{0}, \qquad (14)$$

where $\tilde{\mathbf{v}}$ is computed from \mathbf{v} by solving

$$\left[1 - \alpha^2 \nabla \cdot \nabla\right] \tilde{\mathbf{v}} = \mathbf{v},\tag{15}$$

and $\alpha \geq 0$ is a smoothing parameter.

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
	00000			
Discretization				

3D Euler: Horizontal discretization

The horizontal discretization follows the ICON framework (Bonaventura, 2005) and is based on a triangular grid

- The normal velocities in the horizontal are located at edge midpoints
- Pressure and transported variables are located at the cell centers

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
	00000			
Discretization				

3D Euler: Vertical and time discretizations

- The vertical velocity *w* is located on layer interfaces.
- All variables except *w* are defined in the middle of a layer
- The vertical velocity is treated as a Lagrange multiplier that enforces the hydrostatic balance

- The regularization problem is solved in each horizontal layer; thus, we avoid solving a global 3D problem
- Several time stepping schemes are implemented
 - 3rd order total variation bounded (TVB) Runge-Kutta method (Cockburn et al, 1999)
 - 4th order strong stability preserving Runge-Kutta method (Spiteri, Ruuth, 2002)
 - Störmer-Verlet method

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
	00000			
Discretization				

3D Euler: Vertical and time discretizations

- The vertical velocity *w* is located on layer interfaces.
- All variables except *w* are defined in the middle of a layer
- The vertical velocity is treated as a Lagrange multiplier that enforces the hydrostatic balance

- The regularization problem is solved in each horizontal layer; thus, we avoid solving a global 3D problem
- Several time stepping schemes are implemented
 - 3rd order total variation bounded (TVB) Runge-Kutta method (Cockburn et al, 1999)
 - 4th order strong stability preserving Runge-Kutta method (Spiteri, Ruuth, 2002)
 - Störmer-Verlet method

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions

Outline

- 2 3D Euler equations
 A 3D hydrostatic Euler model
 Discretization
- **3** Numerical results
 - cartesian geometry
 - spherical geometry
- Advances in theory
- Outlook and open questions

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
		00000		
and a stars are seen at my				

cartesian geometry

Baroclinic instability – cartesian case

The 3D model is run for the Jablonowski baroclinic instability test on an f-plane (Jablonowski, 2006)

- Domain: [0,40000] × [0,6000] × [0,30] (in km)
- Horizontal resolution of 312.5 km
- 30 horizontal layers with $\Delta z = 1000 m$
- The initial atmosphere is in hydrostatic and geostrophic balance except for a small wind perturbation
- Third order TVB Runge-Kutta method with Δt varying from 600s (unregularized) up to 2400s (α=1.25)

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
		00000		

cartesian geometry

Restoration of the geostrophic balance

The geostrophic balance equation

$$f v^{\perp} + c_{\rho} \, \theta \, \nabla \pi = 0 \tag{16}$$

has for α -regularized systems the form

$$f\widetilde{\mathbf{v}}^{\perp} + c_{p}\,\theta\,\nabla\pi = 0\tag{17}$$

Possible solutions:

- Replace π by π̃ that satisfies the geostrophic balance

 → Requires knowledge of the analytical form of Ṽ, delays advance of the baroclinic instability due to smoother initial pressure field
- Assign the balanced velocity to ṽ and define v using v = [1 α²∇ · ∇] ṽ → Can be computed automatically; produces a very rough initial velocity field for large α, difficult to stabilize.

Introduction

3D Euler equations

Numerical results

Advances in theory

Outlook and open questions

cartesian geometry

Results(cartesian) – vorticity

Vorticity at z = 500m at day 12. Top to bottom: no regularization, τ -regularization, α -regularization ($\alpha = 1$), α -regularization ($\alpha = 1.25$)

- The results of the *τ*-regularization model are very similar to those of the unregularized system
- α-regularization turns out to be very sensitive to the choice of alpha
- Initial conditions re-balanced by smoothing out the pressure field clearly slow down the advance of the instability

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
		000000		
aphorical geometry				

spherical geometry

Baroclinic instability – spherical case

Jablonowski-Williamson baroclinic instability test on a sphere (Jablonowski, Williamson, 2007)

- Implementation within ICON hydrostatic core
- Initial condition re-balanced by appying the Helmholtz-operator to the horizontal velocity

Mon Jun 6 06E30 CEST 2011

Introduction

3D Euler equations

Numerical results ○○○○●○ Advances in theory

Outlook and open questions

spherical geometry

Results(spherical) – vorticity

 Re-balancing of the initial conditions by applying the Helmholtz-operator to the velocity field increases the instability

 α-regularization allows for a much larger time steps than those of unregularized model

850hPa vorticity at day 9. Top to bottom: no regularization, *a*-regularization

 $(\alpha = 0.5), \alpha$ -regularization $(\alpha = 0.8), \alpha$ -regularization $(\alpha = 1)$

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
		000000		
spherical geometry				

Results(spherical) – temperature

850hPa temperature at day 9. Top to bottom, left to right: no regularization, α -regularization ($\alpha = 0.5$), α -regularization ($\alpha = 0.8$), α -regularization ($\alpha = 1$)

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
Outline				

- IntroductionMotivation
- 3D Euler equations
 A 3D hydrostatic Euler model
 Discretization
- Numerical results
 cartesian geometry
 spherical geometry

Advances in theory

Outlook and open questions

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
Theoreti	cal results			

Theoretical investigation of time and space regularization models conducted in the framework of this project resulted in

- a systematic derivation of a pressure regularization for the vertical slice Euler model in combination with a Störmer-Verlet method (Hundertmark and Reich, 2007)
- proof of the dependence of the longtime behavior of solutions to the Navier-Stokes-α, Leray-α, and Navier-Stokes-ω systems on a finite set of grid values or Fourier modes (Korn, 2011)
- an estimate of the number of determining nodes/modes in terms of flow parameters for each model (as above)

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions
Outline				

- IntroductionMotivation
- 3D Euler equations
 A 3D hydrostatic Euler model
 Discretization
- Numerical results
 cartesian geometry
 spherical geometry
- Advances in theory
- Outlook and open questions

Introduction	3D Euler equations	Numerical results	Advances in theory	Outlook and open questions •

Outlook and open questions

- Boundary conditions: The vast majority of theoretical and numerical work on the α-equations considers periodic domains. The extension to bounded domains poses questions such as:
 - How to choose the mathematically reasonable & physically sound boundary conditions?
 - How the smoothing parameter should be adapted in the vicinity of a boundary?
- *Non-uniform grids:* Grids with varying spatial resolution might need a scale-selective filtering in the transition region between different resolutions.
 - How the smoothing parameter α should be chosen to provide an adequate filter?
 - What are the dispersion properties of regularized models on such grids?

