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Numerical Experiments
Shear flow instability

Simulation of the instability of an inviscid shear flow. Results

for SW-τ , SW-α and a reference unfiltered SW computation.
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Figure 2. Initial condition (left),

middle: hSW (left), contours 1.016 :

0.004 : 1.116 km, hSW − hSW-τ (center)

and hSW − hSW-α (right), both with con-

tours −0.003 : 0002 : 0.003 km.
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Time evolution of the maximum

meridional velocity in SW-α for

different values of α (right).

Larger α ⇒ delayed instability.
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Rossby–Haurwitz wave

Test case 6 of [WDH+92], spherical geometry.
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Figure 3. Free surface height after 12 days, contours from

8030 m to 10530 m, contour intervals of 100 m. Analytic solution

(a), reference explicit solution with ∆t = 900 s (b), time and

space regularized solutions (c and d, respectively), both with

∆t = 2400 s.

Decaying turbulence
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Figure 4. Decaying turbulence experiment: SW with viscosity

ν = 891 m2s−1 (blue), and ν = 446 m2s−1 (black), and SW-α with

ν = 446 m2s−1 and α = 20 km (red). Left: energy dissipation;

right: energy spectra at day 30. Results for SW-τ , not plotted,

analogous to those of SW.

Notice that:

• the space regularization does not enhance dissipation;

• the space regularization enhance the backward energy cas-

cade, a result analogous to [NS01].

Project Status
• The numerical approach of [BR05] has been consistently extended to SW-τ and SW-α.

• SW-τ and SW-α have been implemented in the ICON GCM model.

• The numerical results confirm the efficiency of SW-τ and show the effect of SW-α on energy

spectra and delay of flow instability.

Numerical Discretization
The spatial discretization follows [BR05] and is based on a triangular C-grid where the degrees

of freedom are staggered according to Fig. 1, left.

vν, ṽν

h, h̃

ζ

ντ

div curl

δν
Figure 1. C-grid stagger-

ing, left, and stencils of the

discrete operators δ~ν (blue),

curl (green) and div (red),

right.

The equations are solved in the invariant form with prognostic variables h and v~ν, with v~ν = v ·ν

∂tv~ν = (curl (v~ν) + f ) v∗
~τ
− δ~ν

[
gh∗ + p∗D

]

∂th = −div
(
hv∗

~ν

)
,

(3)

with h∗ = h̃, v∗ = v and p∗D =
|v|2

2 for SW-τ and h∗ = h, v∗ = ṽ and p∗D = ṽ·v−1
2

(
|ṽ|2 + α2|∇ṽ|2

)

for SW-α. The operators curl, div and δ~ν use the stencils of Fig. 1, right. The regularized

quantities h̃, ṽ are diagnosed solving the elliptic problems (1)3 and (2)3, respectively.

The discretization (3) conserves mass, vorticity and enstrophy for both SW-τ and SW-α.

For the time discretization we use the 4th-order RK method described in [SR02].

Regularized Continuous Problem
As a starting point, we consider here the shallow water (SW) equations. We denote by v the

fluid velocity, by h the free surface elevation and by f and g the Coriolis parameter and the

gravitational constant, respectively.

Time regularization

The time regularized SW system (SW-τ ) is

∂tv + (v · ∇)v + fv
⊥ + g∇h̃ = 0

∂th + ∇ · [hv] = 0

(
1 − τ2∇2

) [
h̃ − h

]
= τ 2

g ∇ · R

(1)

where τ ≥ 0 is a smoothing parameter and h̃

is the regularized layer depth.

• In analogy with a semi-implicit time inte-

grator, SW-τ allows for large time steps by

slowing down the fastest gravity waves.

• The choice R = g∇h in (1)3 results in

Hamiltonian equations and well-posedness

of the problem [DLGP97].

• To avoid disturbing the geostrophic bal-

ance, one can take [RWS07]

R = g∇h + fv
⊥+(v · ∇)v

so that the regularization does not affect lin-

early/nonlinearly balanced flows.

• To maintain SW-τ as close as possible to

the unfiltered problem, τ should be chosen

as the smallest value still allowing for sta-

ble time integration, which leads to τ ∝ ∆t,

the constant of proportionality depending

on the chosen time integrator.

Space regularization

The space regularized SW system (SW-α) is

∂tv + ṽ · ∇v +
∑2

j=1 vj∇ṽj + f ṽ
⊥

+ ∇
[
gh−1

2

(
|ṽ|2 + α2|∇ṽ|2

)]
= 0

∂th + ∇ [hṽ] = 0

(
h − α2∇ · (h∇)

)
ṽ = hv,

(2)

where ṽ is the regularized velocity and α ≥ 0 is

the (uniform) smoothing parameter, usually set

as α ≈ ∆x.

System (2) has the following characteristics:

• it can be derived within an Hamiltonian

framework [Hol99] by

1. splitting the flow trajectories into mean and

fluctuating components,

2. averaging the Lagrangian functional over

the fluctuating component,

3. applying Hamilton’s variational principle to

the averaged Lagrangian functional;

• yields conservation of energy and enstrophy;

• reduces the energy/enstrophy cascade to-

ward small scales [NS01];

• it has been found to give better results com-

pared to the unfiltered SW system for ocean

modeling [HHPW08].

Overview

CONTINUOUS PROBLEM
REGULARIZED

CONTINUOUS PROBLEM

NUMERICAL

DISCRETIZATION

Modify the continuous

problem to obtain a

“better” starting

point for the numerical

discretization

usual approach regularization

Constraints: preserve the conservation

properties of the original problem; do not

enhance dissipation.

Notice that...

the regularized problem turns out to be more

tractable also from the analytic viewpoint, so

that well posedness results can be obtained

which are not known to hold for the original

problem.

We are currently investigating two regulariza-

tions of the Navier–Stokes equations, both based

on averaging out small scales fluctuations:

time regularization � improve the efficiency

by enlarging the maximum stable time step;

space regularization � parametrize turbu-

lence by reducing the energy cascade toward

unresolved scales.
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