

Space-Time Adjustable Regularizations (STAR) for the Atmospheric Circulation Model ICON

Marco A. Giorgetta[‡], Tobias Hundertmark[†], Peter Korn[‡], Sebastian Reich[†], Marco Restelli[‡]

[‡]Max Planck Institute for Meteorology, Hamburg, and [†]University of Potsdam.

marco.giorgetta@zmaw.de, hundertm@uni-potsdam.de, peter.korn@zmaw.de, sreich@math.uni-potsdam.de, marco.restelli@zmaw.de

NUMERICAL DISCRETIZATION

that well posedness results can be obtained which are not known to hold for the original problem.

viversits.

· Porsdam

Regularized Continuous Problem

As a starting point, we consider here the shallow water (SW) equations. We denote by v the fluid velocity, by *h* the free surface elevation and by *f* and *g* the Coriolis parameter and the gravitational constant, respectively.

Time regularization The time regularized SW system (SW- τ) is $\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + f\mathbf{v}^{\perp} + g\nabla \widetilde{h} = 0$ $\partial_t h + \nabla \cdot [h\mathbf{v}] = 0$ (1) $(1 - \tau^2 \nabla^2) [\widetilde{h} - h] = \frac{\tau^2}{g} \nabla \cdot \mathcal{R}$

where $\tau \ge 0$ is a smoothing parameter and \tilde{h} is the regularized layer depth.

- In analogy with a semi-implicit time integrator, SW- τ allows for large time steps by slowing down the fastest gravity waves.
- The choice $\mathcal{R} = g\nabla h$ in (1)₃ results in Hamiltonian equations and well-posedness of the problem [DLGP97].

Space regularization

The space regularized SW system (SW- α) is

 $\partial_{t}\mathbf{v} + \widetilde{\mathbf{v}} \cdot \nabla \mathbf{v} + \sum_{j=1}^{2} v_{j} \nabla \widetilde{v}_{j} + f \widetilde{\mathbf{v}}^{\perp}$ $+ \nabla \left[gh - \frac{1}{2} \left(|\widetilde{\mathbf{v}}|^{2} + \alpha^{2} |\nabla \widetilde{\mathbf{v}}|^{2} \right) \right] = 0$ $\partial_{t}h + \nabla \left[h \widetilde{\mathbf{v}} \right] = 0$ (2) $\left(h - \alpha^{2} \nabla \cdot (h \nabla) \right) \widetilde{\mathbf{v}} = h \mathbf{v},$

- where $\widetilde{\mathbf{v}}$ is the regularized velocity and $\alpha \ge 0$ is the (uniform) smoothing parameter, usually set as $\alpha \approx \Delta x$.
- System (2) has the following characteristics:
 it can be derived within an Hamiltonian framework [Hol99] by

Numerical Discretization

The spatial discretization follows [BR05] and is based on a triangular C-grid where the degrees of freedom are staggered according to Fig. 1, left.

The equations are solved in the invariant form with prognostic variables h and $v_{\vec{\nu}}$, with $v_{\vec{\nu}} = \mathbf{v} \cdot \boldsymbol{\nu}$

$$\partial_t v_{\vec{\nu}} = \left(\operatorname{curl}\left(v_{\vec{\nu}}\right) + f\right) v_{\vec{\tau}}^* - \delta_{\vec{\nu}} \left[gh^* + p_D^*\right] \partial_t h = -\operatorname{div}\left(hv_{\vec{\nu}}^*\right),$$
(3)

with $h^* = \tilde{h}$, $\mathbf{v}^* = \mathbf{v}$ and $p_D^* = \frac{|\mathbf{v}|^2}{2}$ for SW- τ and $h^* = h$, $\mathbf{v}^* = \tilde{\mathbf{v}}$ and $p_D^* = \tilde{\mathbf{v}} \cdot \mathbf{v} - \frac{1}{2} \left(|\tilde{\mathbf{v}}|^2 + \alpha^2 |\nabla \tilde{\mathbf{v}}|^2 \right)$ for SW- α . The operators curl, div and $\delta_{\vec{\nu}}$ use the stencils of Fig. 1, right. The regularized quantities \tilde{h} , $\tilde{\mathbf{v}}$ are diagnosed solving the elliptic problems (1)₃ and (2)₃, respectively. The discretization (3) conserves mass, vorticity and enstrophy for both SW- τ and SW- α . For the time discretization we use the 4th-order RK method described in [SR02].

• To avoid disturbing the geostrophic balance, one can take [RWS07]

 $\mathcal{R} = g\nabla h + f\mathbf{v}^{\perp} + (\mathbf{v} \cdot \nabla)\mathbf{v}$

so that the regularization does not affect linearly/nonlinearly balanced flows.

- To maintain SW- τ as close as possible to the unfiltered problem, τ should be chosen as the smallest value still allowing for stable time integration, which leads to $\tau \propto \Delta t$, the constant of proportionality depending on the chosen time integrator.
- 1. splitting the flow trajectories into mean and fluctuating components,
- 2. averaging the Lagrangian functional over the fluctuating component,
- applying Hamilton's variational principle to the averaged Lagrangian functional;
- yields conservation of energy and enstrophy;
- reduces the energy/enstrophy cascade toward small scales [NS01];
- it has been found to give better results compared to the unfiltered SW system for ocean modeling [HHPW08].

Project Status

- The numerical approach of [BR05] has been consistently extended to SW- τ and SW- α . • SW- τ and SW- α have been implemented in the ICON GCM model.
- The numerical results confirm the efficiency of SW- τ and show the effect of SW- α on energy spectra and delay of flow instability.

References

[BR05] L. Bonaventura and T. Ringler. *Mon. Wea. Rev.*, 2005.
[DLGP97] R. Di Lisio, E. Grenier, and M. Pulvirenti. *Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser.*, 1997.
[HHPW08] M.W. Hecht, D.D. Holm, M.R. Petersen, and B.A. Wingate. *J. Comp. Phys.*, 2008.
[Hol99] D.D. Holm. *Physica D: Nonlinear Phenomena*, 1999.
[NS01] B.T. Nadiga and S. Shkoller. *Phys. Fluids*, 2001.
[RWS07] S. Reich, N. Wood, and A. Staniforth. *Atmos. Sci. Lett.*, 2007.
[SR02] R.J. Spiteri and S.J. Ruuth. *SIAMN J. Num. An.*, 2002.
[WDH⁺92] D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, and P.N. Swarztrauber. *J. Comp. Phys.*, 1992.

Numerical Experiments

Shear flow instability

Simulation of the instability of an inviscid shear flow. Results for SW- τ , SW- α and a reference unfiltered SW computation.

Figure 2. Initial condition (left), middle: h_{sw} (left), contours 1.016 : $0.004 : 1.116 \, km$, $h_{sw} - h_{sw-\tau}$ (center) and $h_{sw} - h_{sw-\alpha}$ (right), both with contours $-0.003 : 0002 : 0.003 \, km$.

Time evolution of the maximum meridional velocity in SW- α for different values of α (right). Larger $\alpha \Rightarrow$ delayed instability.

Figure 3. Free surface height after $12 \, days$, contours from $8030 \, m$ to $10530 \, m$, contour intervals of $100 \, m$. Analytic solution (a), reference explicit solution with $\Delta t = 900 \, s$ (b), time and space regularized solutions (c and d, respectively), both with $\Delta t = 2400 \, s$.

Figure 4. Decaying turbulence experiment: SW with viscosity $\nu = 891 m^2 s^{-1}$ (blue), and $\nu = 446 m^2 s^{-1}$ (black), and SW- α with $\nu = 446 m^2 s^{-1}$ and $\alpha = 20 km$ (red). Left: energy dissipation; right: energy spectra at day 30. Results for SW- τ , not plotted, analogous to those of SW.

Notice that:

• the space regularization does not enhance dissipation;

• the space regularization enhance the backward energy cascade, a result analogous to [NS01].

